boringssl/crypto/sha/sha512.c

602 lines
20 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/sha.h>
#include <string.h>
#include <openssl/mem.h>
#include "../internal.h"
/* IMPLEMENTATION NOTES.
*
* As you might have noticed 32-bit hash algorithms:
*
* - permit SHA_LONG to be wider than 32-bit (case on CRAY);
* - optimized versions implement two transform functions: one operating
* on [aligned] data in host byte order and one - on data in input
* stream byte order;
* - share common byte-order neutral collector and padding function
* implementations, ../md32_common.h;
*
* Neither of the above applies to this SHA-512 implementations. Reasons
* [in reverse order] are:
*
* - it's the only 64-bit hash algorithm for the moment of this writing,
* there is no need for common collector/padding implementation [yet];
* - by supporting only one transform function [which operates on
* *aligned* data in input stream byte order, big-endian in this case]
* we minimize burden of maintenance in two ways: a) collector/padding
* function is simpler; b) only one transform function to stare at;
* - SHA_LONG64 is required to be exactly 64-bit in order to be able to
* apply a number of optimizations to mitigate potential performance
* penalties caused by previous design decision; */
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
#define SHA512_ASM
#endif
int SHA384_Init(SHA512_CTX *sha) {
sha->h[0] = OPENSSL_U64(0xcbbb9d5dc1059ed8);
sha->h[1] = OPENSSL_U64(0x629a292a367cd507);
sha->h[2] = OPENSSL_U64(0x9159015a3070dd17);
sha->h[3] = OPENSSL_U64(0x152fecd8f70e5939);
sha->h[4] = OPENSSL_U64(0x67332667ffc00b31);
sha->h[5] = OPENSSL_U64(0x8eb44a8768581511);
sha->h[6] = OPENSSL_U64(0xdb0c2e0d64f98fa7);
sha->h[7] = OPENSSL_U64(0x47b5481dbefa4fa4);
sha->Nl = 0;
sha->Nh = 0;
sha->num = 0;
sha->md_len = SHA384_DIGEST_LENGTH;
return 1;
}
int SHA512_Init(SHA512_CTX *sha) {
sha->h[0] = OPENSSL_U64(0x6a09e667f3bcc908);
sha->h[1] = OPENSSL_U64(0xbb67ae8584caa73b);
sha->h[2] = OPENSSL_U64(0x3c6ef372fe94f82b);
sha->h[3] = OPENSSL_U64(0xa54ff53a5f1d36f1);
sha->h[4] = OPENSSL_U64(0x510e527fade682d1);
sha->h[5] = OPENSSL_U64(0x9b05688c2b3e6c1f);
sha->h[6] = OPENSSL_U64(0x1f83d9abfb41bd6b);
sha->h[7] = OPENSSL_U64(0x5be0cd19137e2179);
sha->Nl = 0;
sha->Nh = 0;
sha->num = 0;
sha->md_len = SHA512_DIGEST_LENGTH;
return 1;
}
uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
SHA512_CTX ctx;
static uint8_t buf[SHA384_DIGEST_LENGTH];
/* TODO(fork): remove this static buffer. */
if (out == NULL) {
out = buf;
}
SHA384_Init(&ctx);
SHA512_Update(&ctx, data, len);
SHA512_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
SHA512_CTX ctx;
static uint8_t buf[SHA512_DIGEST_LENGTH];
/* TODO(fork): remove this static buffer. */
if (out == NULL) {
out = buf;
}
SHA512_Init(&ctx);
SHA512_Update(&ctx, data, len);
SHA512_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
#if !defined(SHA512_ASM)
static
#endif
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
return SHA512_Final(md, sha);
}
int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
return SHA512_Update(sha, data, len);
}
void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0) {
memcpy(c->u.p, data, sizeof(c->u.p));
data = c->u.p;
}
#endif
sha512_block_data_order(c, data, 1);
}
int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
uint64_t l;
uint8_t *p = c->u.p;
const uint8_t *data = (const uint8_t *)in_data;
if (len == 0) {
return 1;
}
l = (c->Nl + (((uint64_t)len) << 3)) & OPENSSL_U64(0xffffffffffffffff);
if (l < c->Nl) {
c->Nh++;
}
if (sizeof(len) >= 8) {
c->Nh += (((uint64_t)len) >> 61);
}
c->Nl = l;
if (c->num != 0) {
size_t n = sizeof(c->u) - c->num;
if (len < n) {
memcpy(p + c->num, data, len);
c->num += (unsigned int)len;
return 1;
} else {
memcpy(p + c->num, data, n), c->num = 0;
len -= n;
data += n;
sha512_block_data_order(c, p, 1);
}
}
if (len >= sizeof(c->u)) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0) {
while (len >= sizeof(c->u)) {
memcpy(p, data, sizeof(c->u));
sha512_block_data_order(c, p, 1);
len -= sizeof(c->u);
data += sizeof(c->u);
}
} else
#endif
{
sha512_block_data_order(c, data, len / sizeof(c->u));
data += len;
len %= sizeof(c->u);
data -= len;
}
}
if (len != 0) {
memcpy(p, data, len);
c->num = (int)len;
}
return 1;
}
int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
uint8_t *p = (uint8_t *)sha->u.p;
size_t n = sha->num;
p[n] = 0x80; /* There always is a room for one */
n++;
if (n > (sizeof(sha->u) - 16)) {
memset(p + n, 0, sizeof(sha->u) - n);
n = 0;
sha512_block_data_order(sha, p, 1);
}
memset(p + n, 0, sizeof(sha->u) - 16 - n);
p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
sha512_block_data_order(sha, p, 1);
if (md == 0) {
return 0;
}
switch (sha->md_len) {
/* Let compiler decide if it's appropriate to unroll... */
case SHA384_DIGEST_LENGTH:
for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
uint64_t t = sha->h[n];
*(md++) = (uint8_t)(t >> 56);
*(md++) = (uint8_t)(t >> 48);
*(md++) = (uint8_t)(t >> 40);
*(md++) = (uint8_t)(t >> 32);
*(md++) = (uint8_t)(t >> 24);
*(md++) = (uint8_t)(t >> 16);
*(md++) = (uint8_t)(t >> 8);
*(md++) = (uint8_t)(t);
}
break;
case SHA512_DIGEST_LENGTH:
for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
uint64_t t = sha->h[n];
*(md++) = (uint8_t)(t >> 56);
*(md++) = (uint8_t)(t >> 48);
*(md++) = (uint8_t)(t >> 40);
*(md++) = (uint8_t)(t >> 32);
*(md++) = (uint8_t)(t >> 24);
*(md++) = (uint8_t)(t >> 16);
*(md++) = (uint8_t)(t >> 8);
*(md++) = (uint8_t)(t);
}
break;
/* ... as well as make sure md_len is not abused. */
default:
return 0;
}
return 1;
}
#ifndef SHA512_ASM
static const uint64_t K512[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
0x5fcb6fab3ad6faec, 0x6c44198c4a475817};
#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
#if defined(__x86_64) || defined(__x86_64__)
#define ROTR(a, n) \
({ \
uint64_t ret; \
asm("rorq %1,%0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
ret; \
})
#define PULL64(x) \
({ \
uint64_t ret = *((const uint64_t *)(&(x))); \
asm("bswapq %0" : "=r"(ret) : "0"(ret)); \
ret; \
})
#elif(defined(__i386) || defined(__i386__))
#define PULL64(x) \
({ \
const unsigned int *p = (const unsigned int *)(&(x)); \
unsigned int hi = p[0], lo = p[1]; \
asm("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
((uint64_t)hi) << 32 | lo; \
})
#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
#define ROTR(a, n) \
({ \
uint64_t ret; \
asm("rotrdi %0,%1,%2" : "=r"(ret) : "r"(a), "K"(n)); \
ret; \
})
#elif defined(__aarch64__)
#define ROTR(a, n) \
({ \
uint64_t ret; \
asm("ror %0,%1,%2" : "=r"(ret) : "r"(a), "I"(n)); \
ret; \
})
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define PULL64(x) \
({ \
uint64_t ret; \
asm("rev %0,%1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
ret; \
})
#endif
#endif
#elif defined(_MSC_VER)
#if defined(_WIN64) /* applies to both IA-64 and AMD64 */
#pragma intrinsic(_rotr64)
#define ROTR(a, n) _rotr64((a), n)
#endif
#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
static uint64_t __fastcall __pull64be(const void *x) {
_asm mov edx, [ecx + 0]
_asm mov eax, [ecx + 4]
_asm bswap edx
_asm bswap eax
}
#define PULL64(x) __pull64be(&(x))
#if _MSC_VER <= 1200
#pragma inline_depth(0)
#endif
#endif
#endif
#ifndef PULL64
#define B(x, j) \
(((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
#define PULL64(x) \
(B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
B(x, 7))
#endif
#ifndef ROTR
#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
#endif
#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
/*
* This code should give better results on 32-bit CPU with less than
* ~24 registers, both size and performance wise...
*/
static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
size_t num) {
const uint64_t *W = in;
uint64_t A, E, T;
uint64_t X[9 + 80], *F;
int i;
while (num--) {
F = X + 80;
A = ctx->h[0];
F[1] = ctx->h[1];
F[2] = ctx->h[2];
F[3] = ctx->h[3];
E = ctx->h[4];
F[5] = ctx->h[5];
F[6] = ctx->h[6];
F[7] = ctx->h[7];
for (i = 0; i < 16; i++, F--) {
T = PULL64(W[i]);
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
for (; i < 80; i++, F--) {
T = sigma0(F[8 + 16 - 1]);
T += sigma1(F[8 + 16 - 14]);
T += F[8 + 16] + F[8 + 16 - 9];
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
ctx->h[0] += A;
ctx->h[1] += F[1];
ctx->h[2] += F[2];
ctx->h[3] += F[3];
ctx->h[4] += E;
ctx->h[5] += F[5];
ctx->h[6] += F[6];
ctx->h[7] += F[7];
W += 16;
}
}
#else
#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
do { \
T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
h = Sigma0(a) + Maj(a, b, c); \
d += T1; \
h += T1; \
} while (0)
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
do { \
s0 = X[(j + 1) & 0x0f]; \
s0 = sigma0(s0); \
s1 = X[(j + 14) & 0x0f]; \
s1 = sigma1(s1); \
T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
} while (0)
static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
size_t num) {
const uint64_t *W = in;
uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
uint64_t X[16];
int i;
while (num--) {
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
f = ctx->h[5];
g = ctx->h[6];
h = ctx->h[7];
T1 = X[0] = PULL64(W[0]);
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = PULL64(W[1]);
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = PULL64(W[2]);
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = PULL64(W[3]);
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = PULL64(W[4]);
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = PULL64(W[5]);
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = PULL64(W[6]);
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = PULL64(W[7]);
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = PULL64(W[8]);
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = PULL64(W[9]);
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = PULL64(W[10]);
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = PULL64(W[11]);
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = PULL64(W[12]);
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = PULL64(W[13]);
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = PULL64(W[14]);
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = PULL64(W[15]);
ROUND_00_15(15, b, c, d, e, f, g, h, a);
for (i = 16; i < 80; i += 16) {
ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
}
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
W += 16;
}
}
#endif
#endif /* SHA512_ASM */