boringssl/crypto/crypto.c

165 lines
4.7 KiB
C
Raw Normal View History

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/crypto.h>
#include <openssl/cpu.h>
#include "internal.h"
#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_STATIC_ARMCAP) && \
(defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
Add PPC64LE assembly for AES-GCM. This change adds AES and GHASH assembly from upstream, with the aim of speeding up AES-GCM. The PPC64LE assembly matches the interface of the ARMv8 assembly so I've changed the prefix of both sets of asm functions to be the same ("aes_hw_"). Otherwise, the new assmebly files and Perlasm match exactly those from upstream's c536b6be1a (from their master branch). Before: Did 1879000 AES-128-GCM (16 bytes) seal operations in 1000428us (1878196.1 ops/sec): 30.1 MB/s Did 61000 AES-128-GCM (1350 bytes) seal operations in 1006660us (60596.4 ops/sec): 81.8 MB/s Did 11000 AES-128-GCM (8192 bytes) seal operations in 1072649us (10255.0 ops/sec): 84.0 MB/s Did 1665000 AES-256-GCM (16 bytes) seal operations in 1000591us (1664016.6 ops/sec): 26.6 MB/s Did 52000 AES-256-GCM (1350 bytes) seal operations in 1006971us (51640.0 ops/sec): 69.7 MB/s Did 8840 AES-256-GCM (8192 bytes) seal operations in 1013294us (8724.0 ops/sec): 71.5 MB/s After: Did 4994000 AES-128-GCM (16 bytes) seal operations in 1000017us (4993915.1 ops/sec): 79.9 MB/s Did 1389000 AES-128-GCM (1350 bytes) seal operations in 1000073us (1388898.6 ops/sec): 1875.0 MB/s Did 319000 AES-128-GCM (8192 bytes) seal operations in 1000101us (318967.8 ops/sec): 2613.0 MB/s Did 4668000 AES-256-GCM (16 bytes) seal operations in 1000149us (4667304.6 ops/sec): 74.7 MB/s Did 1202000 AES-256-GCM (1350 bytes) seal operations in 1000646us (1201224.0 ops/sec): 1621.7 MB/s Did 269000 AES-256-GCM (8192 bytes) seal operations in 1002804us (268247.8 ops/sec): 2197.5 MB/s Change-Id: Id848562bd4e1aa79a4683012501dfa5e6c08cfcc Reviewed-on: https://boringssl-review.googlesource.com/11262 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-09-23 20:47:24 +01:00
defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) || \
defined(OPENSSL_PPC64LE))
/* x86, x86_64, the ARMs and ppc64le need to record the result of a
* cpuid/getauxval call for the asm to work correctly, unless compiled without
* asm code. */
#define NEED_CPUID
#else
/* Otherwise, don't emit a static initialiser. */
#if !defined(BORINGSSL_NO_STATIC_INITIALIZER)
#define BORINGSSL_NO_STATIC_INITIALIZER
#endif
#endif /* !OPENSSL_NO_ASM && (OPENSSL_X86 || OPENSSL_X86_64 ||
OPENSSL_ARM || OPENSSL_AARCH64) */
/* The capability variables are defined in this file in order to work around a
* linker bug. When linking with a .a, if no symbols in a .o are referenced
* then the .o is discarded, even if it has constructor functions.
*
* This still means that any binaries that don't include some functionality
* that tests the capability values will still skip the constructor but, so
* far, the init constructor function only sets the capability variables. */
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
/* This value must be explicitly initialised to zero in order to work around a
* bug in libtool or the linker on OS X.
*
* If not initialised then it becomes a "common symbol". When put into an
* archive, linking on OS X will fail to resolve common symbols. By
* initialising it to zero, it becomes a "data symbol", which isn't so
* affected. */
uint32_t OPENSSL_ia32cap_P[4] = {0};
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#include <openssl/arm_arch.h>
#if defined(OPENSSL_STATIC_ARMCAP)
uint32_t OPENSSL_armcap_P =
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON__)
ARMV7_NEON |
#endif
#if defined(OPENSSL_STATIC_ARMCAP_AES)
ARMV8_AES |
#endif
#if defined(OPENSSL_STATIC_ARMCAP_SHA1)
ARMV8_SHA1 |
#endif
#if defined(OPENSSL_STATIC_ARMCAP_SHA256)
ARMV8_SHA256 |
#endif
#if defined(OPENSSL_STATIC_ARMCAP_PMULL)
ARMV8_PMULL |
#endif
0;
#else
uint32_t OPENSSL_armcap_P = 0;
#endif
#endif
#if defined(OPENSSL_WINDOWS) && !defined(BORINGSSL_NO_STATIC_INITIALIZER)
#define OPENSSL_CDECL __cdecl
#else
#define OPENSSL_CDECL
#endif
#if defined(BORINGSSL_NO_STATIC_INITIALIZER)
static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
#elif defined(OPENSSL_WINDOWS)
#pragma section(".CRT$XCU", read)
static void __cdecl do_library_init(void);
__declspec(allocate(".CRT$XCU")) void(*library_init_constructor)(void) =
do_library_init;
#else
static void do_library_init(void) __attribute__ ((constructor));
#endif
/* do_library_init is the actual initialization function. If
* BORINGSSL_NO_STATIC_INITIALIZER isn't defined, this is set as a static
* initializer. Otherwise, it is called by CRYPTO_library_init. */
static void OPENSSL_CDECL do_library_init(void) {
/* WARNING: this function may only configure the capability variables. See the
* note above about the linker bug. */
#if defined(NEED_CPUID)
OPENSSL_cpuid_setup();
#endif
}
void CRYPTO_library_init(void) {
/* TODO(davidben): It would be tidier if this build knob could be replaced
* with an internal lazy-init mechanism that would handle things correctly
* in-library. https://crbug.com/542879 */
#if defined(BORINGSSL_NO_STATIC_INITIALIZER)
CRYPTO_once(&once, do_library_init);
#endif
}
int CRYPTO_is_confidential_build(void) {
#if defined(BORINGSSL_CONFIDENTIAL)
return 1;
#else
return 0;
#endif
}
int CRYPTO_has_asm(void) {
#if defined(OPENSSL_NO_ASM)
return 0;
#else
return 1;
#endif
}
const char *SSLeay_version(int unused) {
return "BoringSSL";
}
unsigned long SSLeay(void) {
return OPENSSL_VERSION_NUMBER;
}
int CRYPTO_malloc_init(void) {
return 1;
}
void ENGINE_load_builtin_engines(void) {}
int ENGINE_register_all_complete(void) {
return 1;
}
void OPENSSL_load_builtin_modules(void) {}
int FIPS_mode(void) { return 0; }