boringssl/crypto/pkcs8/pkcs8.c

604 lines
17 KiB
C
Raw Normal View History

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 1999.
*/
/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/pkcs8.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include <openssl/cipher.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/x509.h>
#include "../evp/internal.h"
#define PKCS12_KEY_ID 1
#define PKCS12_IV_ID 2
static int ascii_to_ucs2(const char *ascii, size_t ascii_len,
uint8_t **out, size_t *out_len) {
uint8_t *unitmp;
size_t ulen, i;
ulen = ascii_len * 2 + 2;
if (ulen < ascii_len) {
return 0;
}
unitmp = OPENSSL_malloc(ulen);
if (unitmp == NULL) {
return 0;
}
for (i = 0; i < ulen - 2; i += 2) {
unitmp[i] = 0;
unitmp[i + 1] = ascii[i >> 1];
}
/* Make result double null terminated */
unitmp[ulen - 2] = 0;
unitmp[ulen - 1] = 0;
*out_len = ulen;
*out = unitmp;
return 1;
}
static int pkcs12_key_gen_raw(const uint8_t *pass_raw, size_t pass_raw_len,
uint8_t *salt, size_t salt_len,
int id, int iterations,
size_t out_len, uint8_t *out,
const EVP_MD *md_type) {
uint8_t *B, *D, *I, *p, *Ai;
int Slen, Plen, Ilen, Ijlen;
int i, j, v;
size_t u;
int ret = 0;
BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
v = EVP_MD_block_size(md_type);
u = EVP_MD_size(md_type);
D = OPENSSL_malloc(v);
Ai = OPENSSL_malloc(u);
B = OPENSSL_malloc(v + 1);
Slen = v * ((salt_len + v - 1) / v);
if (pass_raw_len)
Plen = v * ((pass_raw_len + v - 1) / v);
else
Plen = 0;
Ilen = Slen + Plen;
I = OPENSSL_malloc(Ilen);
Ij = BN_new();
Bpl1 = BN_new();
if (!D || !Ai || !B || !I || !Ij || !Bpl1)
goto err;
for (i = 0; i < v; i++)
D[i] = id;
p = I;
for (i = 0; i < Slen; i++)
*p++ = salt[i % salt_len];
for (i = 0; i < Plen; i++)
*p++ = pass_raw[i % pass_raw_len];
for (;;) {
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
!EVP_DigestUpdate(&ctx, D, v) ||
!EVP_DigestUpdate(&ctx, I, Ilen) ||
!EVP_DigestFinal_ex(&ctx, Ai, NULL)) {
goto err;
}
for (j = 1; j < iterations; j++) {
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
!EVP_DigestUpdate(&ctx, Ai, u) ||
!EVP_DigestFinal_ex(&ctx, Ai, NULL)) {
goto err;
}
}
memcpy(out, Ai, out_len < u ? out_len : u);
if (u >= out_len) {
ret = 1;
goto end;
}
out_len -= u;
out += u;
for (j = 0; j < v; j++)
B[j] = Ai[j % u];
/* Work out B + 1 first then can use B as tmp space */
if (!BN_bin2bn(B, v, Bpl1))
goto err;
if (!BN_add_word(Bpl1, 1))
goto err;
for (j = 0; j < Ilen; j += v) {
if (!BN_bin2bn(I + j, v, Ij))
goto err;
if (!BN_add(Ij, Ij, Bpl1))
goto err;
if (!BN_bn2bin(Ij, B))
goto err;
Ijlen = BN_num_bytes(Ij);
/* If more than 2^(v*8) - 1 cut off MSB */
if (Ijlen > v) {
if (!BN_bn2bin(Ij, B))
goto err;
memcpy(I + j, B + 1, v);
/* If less than v bytes pad with zeroes */
} else if (Ijlen < v) {
memset(I + j, 0, v - Ijlen);
if (!BN_bn2bin(Ij, I + j + v - Ijlen))
goto err;
} else if (!BN_bn2bin(Ij, I + j)) {
goto err;
}
}
}
err:
OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_raw, ERR_R_MALLOC_FAILURE);
end:
OPENSSL_free(Ai);
OPENSSL_free(B);
OPENSSL_free(D);
OPENSSL_free(I);
BN_free(Ij);
BN_free(Bpl1);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw,
size_t pass_raw_len, ASN1_TYPE *param,
const EVP_CIPHER *cipher, const EVP_MD *md,
int is_encrypt) {
PBEPARAM *pbe;
int salt_len, iterations, ret;
uint8_t *salt;
const uint8_t *pbuf;
uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH];
/* Extract useful info from parameter */
if (param == NULL || param->type != V_ASN1_SEQUENCE ||
param->value.sequence == NULL) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR);
return 0;
}
pbuf = param->value.sequence->data;
pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length);
if (pbe == NULL) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR);
return 0;
}
if (!pbe->iter) {
iterations = 1;
} else {
iterations = ASN1_INTEGER_get(pbe->iter);
}
salt = pbe->salt->data;
salt_len = pbe->salt->length;
if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_KEY_ID,
iterations, EVP_CIPHER_key_length(cipher), key, md)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR);
PBEPARAM_free(pbe);
return 0;
}
if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_IV_ID,
iterations, EVP_CIPHER_iv_length(cipher), iv, md)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR);
PBEPARAM_free(pbe);
return 0;
}
PBEPARAM_free(pbe);
ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
return ret;
}
typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw,
size_t pass_raw_len, ASN1_TYPE *param,
const EVP_CIPHER *cipher, const EVP_MD *md,
int is_encrypt);
struct pbe_suite {
int pbe_nid;
int cipher_nid;
int md_nid;
keygen_func keygen;
};
static const struct pbe_suite kBuiltinPBE[] = {
{
NID_pbe_WithSHA1And128BitRC4, NID_rc4, NID_sha1, pkcs12_pbe_keyivgen,
},
{
NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_des_ede3_cbc, NID_sha1,
pkcs12_pbe_keyivgen,
},
};
static int pbe_cipher_init(ASN1_OBJECT *pbe_obj,
const uint8_t *pass_raw, size_t pass_raw_len,
ASN1_TYPE *param,
EVP_CIPHER_CTX *ctx, int is_encrypt) {
const EVP_CIPHER *cipher;
const EVP_MD *md;
unsigned i;
const struct pbe_suite *suite = NULL;
const int pbe_nid = OBJ_obj2nid(pbe_obj);
for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) {
suite = &kBuiltinPBE[i];
if (suite->pbe_nid == pbe_nid) {
break;
}
}
if (suite == NULL) {
char obj_str[80];
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM);
if (!pbe_obj) {
strncpy(obj_str, "NULL", sizeof(obj_str));
} else {
i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj);
}
ERR_add_error_data(2, "TYPE=", obj_str);
return 0;
}
if (suite->cipher_nid == -1) {
cipher = NULL;
} else {
cipher = EVP_get_cipherbynid(suite->cipher_nid);
if (!cipher) {
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER);
return 0;
}
}
if (suite->md_nid == -1) {
md = NULL;
} else {
md = EVP_get_digestbynid(suite->md_nid);
if (!md) {
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST);
return 0;
}
}
if (!suite->keygen(ctx, pass_raw, pass_raw_len, param, cipher, md,
is_encrypt)) {
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE);
return 0;
}
return 1;
}
static int pbe_crypt(const X509_ALGOR *algor,
const uint8_t *pass_raw, size_t pass_raw_len,
uint8_t *in, size_t in_len, uint8_t **out, size_t *out_len,
int is_encrypt) {
uint8_t *buf;
int n, ret = 0;
EVP_CIPHER_CTX ctx;
unsigned block_size;
EVP_CIPHER_CTX_init(&ctx);
if (!pbe_cipher_init(algor->algorithm, pass_raw, pass_raw_len,
algor->parameter, &ctx, is_encrypt)) {
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM);
return 0;
}
block_size = EVP_CIPHER_CTX_block_size(&ctx);
if (in_len + block_size < in_len) {
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG);
goto err;
}
buf = OPENSSL_malloc(in_len + block_size);
if (buf == NULL) {
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) {
OPENSSL_free(buf);
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB);
goto err;
}
*out_len = n;
if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) {
OPENSSL_free(buf);
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB);
goto err;
}
*out_len += n;
*out = buf;
ret = 1;
err:
EVP_CIPHER_CTX_cleanup(&ctx);
return ret;
}
static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it,
const uint8_t *pass_raw,
size_t pass_raw_len,
ASN1_OCTET_STRING *oct) {
uint8_t *out;
const uint8_t *p;
void *ret;
size_t out_len;
if (!pbe_crypt(algor, pass_raw, pass_raw_len, oct->data, oct->length,
&out, &out_len, 0 /* decrypt */)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR);
return NULL;
}
p = out;
ret = ASN1_item_d2i(NULL, &p, out_len, it);
OPENSSL_cleanse(out, out_len);
if (!ret) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR);
}
OPENSSL_free(out);
return ret;
}
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
int pass_len) {
uint8_t *pass_raw = NULL;
size_t pass_raw_len = 0;
PKCS8_PRIV_KEY_INFO *ret;
if (pass) {
if (pass_len == -1) {
pass_len = strlen(pass);
}
if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_asc, PKCS8_R_DECODE_ERROR);
return NULL;
}
}
ret = PKCS8_decrypt_pbe(pkcs8, pass_raw, pass_raw_len);
if (pass_raw) {
OPENSSL_cleanse(pass_raw, pass_raw_len);
OPENSSL_free(pass_raw);
}
return ret;
}
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt_pbe(X509_SIG *pkcs8, const uint8_t *pass_raw,
size_t pass_raw_len) {
return pkcs12_item_decrypt_d2i(pkcs8->algor,
ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw,
pass_raw_len, pkcs8->digest);
}
static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor,
const ASN1_ITEM *it,
const uint8_t *pass_raw,
size_t pass_raw_len, void *obj) {
ASN1_OCTET_STRING *oct;
uint8_t *in = NULL;
int in_len;
size_t crypt_len;
oct = M_ASN1_OCTET_STRING_new();
if (oct == NULL) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE);
return NULL;
}
in_len = ASN1_item_i2d(obj, &in, it);
if (!in) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR);
return NULL;
}
if (!pbe_crypt(algor, pass_raw, pass_raw_len, in, in_len, &oct->data, &crypt_len,
1 /* encrypt */)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR);
OPENSSL_free(in);
return NULL;
}
oct->length = crypt_len;
OPENSSL_cleanse(in, in_len);
OPENSSL_free(in);
return oct;
}
X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
int pass_len, uint8_t *salt, size_t salt_len,
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
uint8_t *pass_raw = NULL;
size_t pass_raw_len = 0;
X509_SIG *ret;
if (pass) {
if (pass_len == -1) {
pass_len = strlen(pass);
}
if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) {
OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_asc, PKCS8_R_DECODE_ERROR);
return NULL;
}
}
ret = PKCS8_encrypt_pbe(pbe_nid, pass_raw, pass_raw_len,
salt, salt_len, iterations, p8inf);
if (pass_raw) {
OPENSSL_cleanse(pass_raw, pass_raw_len);
OPENSSL_free(pass_raw);
}
return ret;
}
X509_SIG *PKCS8_encrypt_pbe(int pbe_nid,
const uint8_t *pass_raw, size_t pass_raw_len,
uint8_t *salt, size_t salt_len,
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
X509_SIG *pkcs8 = NULL;
X509_ALGOR *pbe;
pkcs8 = X509_SIG_new();
if (pkcs8 == NULL) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_MALLOC_FAILURE);
goto err;
}
pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len);
if (!pbe) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_ASN1_LIB);
goto err;
}
X509_ALGOR_free(pkcs8->algor);
pkcs8->algor = pbe;
M_ASN1_OCTET_STRING_free(pkcs8->digest);
pkcs8->digest = pkcs12_item_i2d_encrypt(
pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw, pass_raw_len, p8inf);
if (!pkcs8->digest) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, PKCS8_R_ENCRYPT_ERROR);
goto err;
}
return pkcs8;
err:
X509_SIG_free(pkcs8);
return NULL;
}
EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
EVP_PKEY *pkey = NULL;
ASN1_OBJECT *algoid;
char obj_tmp[80];
if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8))
return NULL;
pkey = EVP_PKEY_new();
if (pkey == NULL) {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY,
PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM);
i2t_ASN1_OBJECT(obj_tmp, 80, algoid);
ERR_add_error_data(2, "TYPE=", obj_tmp);
goto error;
}
if (pkey->ameth->priv_decode) {
if (!pkey->ameth->priv_decode(pkey, p8)) {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR);
goto error;
}
} else {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED);
goto error;
}
return pkey;
error:
EVP_PKEY_free(pkey);
return NULL;
}
PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
PKCS8_PRIV_KEY_INFO *p8;
p8 = PKCS8_PRIV_KEY_INFO_new();
if (p8 == NULL) {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE);
return NULL;
}
p8->broken = PKCS8_OK;
if (pkey->ameth) {
if (pkey->ameth->priv_encode) {
if (!pkey->ameth->priv_encode(p8, pkey)) {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8,
PKCS8_R_PRIVATE_KEY_ENCODE_ERROR);
goto error;
}
} else {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED);
goto error;
}
} else {
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8,
PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM);
goto error;
}
return p8;
error:
PKCS8_PRIV_KEY_INFO_free(p8);
return NULL;
}