You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Add start of infrastructure for checking constant-time properties. Valgrind's checking of uninitialised memory behaves very much like a check for constant-time code: branches and memory indexes based on uninitialised memory trigger warnings. Therefore, if we can tell Valgrind that some secret is “uninitialised”, it'll give us a warning if we do something non-constant-time with it. This was the idea behind https://github.com/agl/ctgrind. But tricks like that are no longer needed because Valgrind now comes with support for marking regions of memory as defined or not. Therefore we can use that API to check constant-time code. This CL defines |CONSTTIME_SECRET| and |CONSTTIME_DECLASSIFY|, which are no-ops unless the code is built with |BORINGSSL_CONSTANT_TIME_VALIDATION| defined, which it isn't by default. So this CL is a no-op itself so far. But it does show that a couple of bits of constant-time time are, in fact, constant-time—seemingly even when compiled with optimisations, which is nice. The annotations in the RSA code are a) probably not marking all the secrets as secret, and b) triggers warnings that are a little interesting: The anti-glitch check calls |BN_mod_exp_mont| which checks that the input is less than the modulus. Of course, it is because the input is the RSA plaintext that we just decrypted, but the plaintext is supposed to be secret and so branching based on its contents isn't allows by Valgrind. The answer isn't totally clear, but I've run out of time on this for now. Change-Id: I1608ed0b22d201e97595fafe46127159e02d5b1b Reviewed-on: https://boringssl-review.googlesource.com/c/33504 Reviewed-by: Adam Langley <agl@google.com> Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: Adam Langley <agl@google.com>
пре 5 година
Add PPC64LE assembly for AES-GCM. This change adds AES and GHASH assembly from upstream, with the aim of speeding up AES-GCM. The PPC64LE assembly matches the interface of the ARMv8 assembly so I've changed the prefix of both sets of asm functions to be the same ("aes_hw_"). Otherwise, the new assmebly files and Perlasm match exactly those from upstream's c536b6be1a (from their master branch). Before: Did 1879000 AES-128-GCM (16 bytes) seal operations in 1000428us (1878196.1 ops/sec): 30.1 MB/s Did 61000 AES-128-GCM (1350 bytes) seal operations in 1006660us (60596.4 ops/sec): 81.8 MB/s Did 11000 AES-128-GCM (8192 bytes) seal operations in 1072649us (10255.0 ops/sec): 84.0 MB/s Did 1665000 AES-256-GCM (16 bytes) seal operations in 1000591us (1664016.6 ops/sec): 26.6 MB/s Did 52000 AES-256-GCM (1350 bytes) seal operations in 1006971us (51640.0 ops/sec): 69.7 MB/s Did 8840 AES-256-GCM (8192 bytes) seal operations in 1013294us (8724.0 ops/sec): 71.5 MB/s After: Did 4994000 AES-128-GCM (16 bytes) seal operations in 1000017us (4993915.1 ops/sec): 79.9 MB/s Did 1389000 AES-128-GCM (1350 bytes) seal operations in 1000073us (1388898.6 ops/sec): 1875.0 MB/s Did 319000 AES-128-GCM (8192 bytes) seal operations in 1000101us (318967.8 ops/sec): 2613.0 MB/s Did 4668000 AES-256-GCM (16 bytes) seal operations in 1000149us (4667304.6 ops/sec): 74.7 MB/s Did 1202000 AES-256-GCM (1350 bytes) seal operations in 1000646us (1201224.0 ops/sec): 1621.7 MB/s Did 269000 AES-256-GCM (8192 bytes) seal operations in 1002804us (268247.8 ops/sec): 2197.5 MB/s Change-Id: Id848562bd4e1aa79a4683012501dfa5e6c08cfcc Reviewed-on: https://boringssl-review.googlesource.com/11262 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
пре 8 година
Add start of infrastructure for checking constant-time properties. Valgrind's checking of uninitialised memory behaves very much like a check for constant-time code: branches and memory indexes based on uninitialised memory trigger warnings. Therefore, if we can tell Valgrind that some secret is “uninitialised”, it'll give us a warning if we do something non-constant-time with it. This was the idea behind https://github.com/agl/ctgrind. But tricks like that are no longer needed because Valgrind now comes with support for marking regions of memory as defined or not. Therefore we can use that API to check constant-time code. This CL defines |CONSTTIME_SECRET| and |CONSTTIME_DECLASSIFY|, which are no-ops unless the code is built with |BORINGSSL_CONSTANT_TIME_VALIDATION| defined, which it isn't by default. So this CL is a no-op itself so far. But it does show that a couple of bits of constant-time time are, in fact, constant-time—seemingly even when compiled with optimisations, which is nice. The annotations in the RSA code are a) probably not marking all the secrets as secret, and b) triggers warnings that are a little interesting: The anti-glitch check calls |BN_mod_exp_mont| which checks that the input is less than the modulus. Of course, it is because the input is the RSA plaintext that we just decrypted, but the plaintext is supposed to be secret and so branching based on its contents isn't allows by Valgrind. The answer isn't totally clear, but I've run out of time on this for now. Change-Id: I1608ed0b22d201e97595fafe46127159e02d5b1b Reviewed-on: https://boringssl-review.googlesource.com/c/33504 Reviewed-by: Adam Langley <agl@google.com> Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: Adam Langley <agl@google.com>
пре 5 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com). */
  108. #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
  109. #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
  110. #include <openssl/ex_data.h>
  111. #include <openssl/stack.h>
  112. #include <openssl/thread.h>
  113. #include <assert.h>
  114. #include <string.h>
  115. #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
  116. #include <valgrind/memcheck.h>
  117. #endif
  118. #if !defined(__cplusplus)
  119. #if defined(_MSC_VER)
  120. #define alignas(x) __declspec(align(x))
  121. #define alignof __alignof
  122. #else
  123. #include <stdalign.h>
  124. #endif
  125. #endif
  126. #if defined(OPENSSL_THREADS) && \
  127. (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
  128. #include <pthread.h>
  129. #define OPENSSL_PTHREADS
  130. #endif
  131. #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
  132. defined(OPENSSL_WINDOWS)
  133. #define OPENSSL_WINDOWS_THREADS
  134. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  135. #include <windows.h>
  136. OPENSSL_MSVC_PRAGMA(warning(pop))
  137. #endif
  138. #if defined(__cplusplus)
  139. extern "C" {
  140. #endif
  141. #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
  142. defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
  143. // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
  144. void OPENSSL_cpuid_setup(void);
  145. #endif
  146. #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
  147. !defined(OPENSSL_STATIC_ARMCAP)
  148. // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
  149. // for unit tests. Any modifications to the value must be made after
  150. // |CRYPTO_library_init| but before any other function call in BoringSSL.
  151. OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
  152. #endif
  153. #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
  154. #define BORINGSSL_HAS_UINT128
  155. typedef __int128_t int128_t;
  156. typedef __uint128_t uint128_t;
  157. // clang-cl supports __uint128_t but modulus and division don't work.
  158. // https://crbug.com/787617.
  159. #if !defined(_MSC_VER) || !defined(__clang__)
  160. #define BORINGSSL_CAN_DIVIDE_UINT128
  161. #endif
  162. #endif
  163. #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
  164. // Have a generic fall-through for different versions of C/C++.
  165. #if defined(__cplusplus) && __cplusplus >= 201703L
  166. #define OPENSSL_FALLTHROUGH [[fallthrough]]
  167. #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
  168. #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
  169. #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
  170. __GNUC__ >= 7
  171. #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
  172. #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
  173. #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
  174. #else // C++11 on gcc 6, and all other cases
  175. #define OPENSSL_FALLTHROUGH
  176. #endif
  177. // buffers_alias returns one if |a| and |b| alias and zero otherwise.
  178. static inline int buffers_alias(const uint8_t *a, size_t a_len,
  179. const uint8_t *b, size_t b_len) {
  180. // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
  181. // objects are undefined whereas pointer to integer conversions are merely
  182. // implementation-defined. We assume the implementation defined it in a sane
  183. // way.
  184. uintptr_t a_u = (uintptr_t)a;
  185. uintptr_t b_u = (uintptr_t)b;
  186. return a_u + a_len > b_u && b_u + b_len > a_u;
  187. }
  188. // Constant-time utility functions.
  189. //
  190. // The following methods return a bitmask of all ones (0xff...f) for true and 0
  191. // for false. This is useful for choosing a value based on the result of a
  192. // conditional in constant time. For example,
  193. //
  194. // if (a < b) {
  195. // c = a;
  196. // } else {
  197. // c = b;
  198. // }
  199. //
  200. // can be written as
  201. //
  202. // crypto_word_t lt = constant_time_lt_w(a, b);
  203. // c = constant_time_select_w(lt, a, b);
  204. // crypto_word_t is the type that most constant-time functions use. Ideally we
  205. // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
  206. // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
  207. // bits. Since we want to be able to do constant-time operations on a
  208. // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
  209. // word length.
  210. #if defined(OPENSSL_64_BIT)
  211. typedef uint64_t crypto_word_t;
  212. #elif defined(OPENSSL_32_BIT)
  213. typedef uint32_t crypto_word_t;
  214. #else
  215. #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
  216. #endif
  217. #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
  218. #define CONSTTIME_FALSE_W ((crypto_word_t)0)
  219. #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
  220. #define CONSTTIME_FALSE_8 ((uint8_t)0)
  221. // constant_time_msb_w returns the given value with the MSB copied to all the
  222. // other bits.
  223. static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
  224. return 0u - (a >> (sizeof(a) * 8 - 1));
  225. }
  226. // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
  227. static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
  228. crypto_word_t b) {
  229. // Consider the two cases of the problem:
  230. // msb(a) == msb(b): a < b iff the MSB of a - b is set.
  231. // msb(a) != msb(b): a < b iff the MSB of b is set.
  232. //
  233. // If msb(a) == msb(b) then the following evaluates as:
  234. // msb(a^((a^b)|((a-b)^a))) ==
  235. // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
  236. // msb(a^a^(a-b)) == (rearranging)
  237. // msb(a-b) (because ∀x. x^x == 0)
  238. //
  239. // Else, if msb(a) != msb(b) then the following evaluates as:
  240. // msb(a^((a^b)|((a-b)^a))) ==
  241. // msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
  242. // represents a value s.t. msb(𝟙) = 1)
  243. // msb(a^𝟙) == (because ORing with 1 results in 1)
  244. // msb(b)
  245. //
  246. //
  247. // Here is an SMT-LIB verification of this formula:
  248. //
  249. // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
  250. // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
  251. // )
  252. //
  253. // (declare-fun a () (_ BitVec 32))
  254. // (declare-fun b () (_ BitVec 32))
  255. //
  256. // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
  257. // (check-sat)
  258. // (get-model)
  259. return constant_time_msb_w(a^((a^b)|((a-b)^a)));
  260. }
  261. // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
  262. // mask.
  263. static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
  264. return (uint8_t)(constant_time_lt_w(a, b));
  265. }
  266. // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
  267. static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
  268. crypto_word_t b) {
  269. return ~constant_time_lt_w(a, b);
  270. }
  271. // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
  272. // mask.
  273. static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
  274. return (uint8_t)(constant_time_ge_w(a, b));
  275. }
  276. // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
  277. static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
  278. // Here is an SMT-LIB verification of this formula:
  279. //
  280. // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
  281. // (bvand (bvnot a) (bvsub a #x00000001))
  282. // )
  283. //
  284. // (declare-fun a () (_ BitVec 32))
  285. //
  286. // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
  287. // (check-sat)
  288. // (get-model)
  289. return constant_time_msb_w(~a & (a - 1));
  290. }
  291. // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
  292. // 8-bit mask.
  293. static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
  294. return (uint8_t)(constant_time_is_zero_w(a));
  295. }
  296. // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
  297. static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
  298. crypto_word_t b) {
  299. return constant_time_is_zero_w(a ^ b);
  300. }
  301. // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
  302. // mask.
  303. static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
  304. return (uint8_t)(constant_time_eq_w(a, b));
  305. }
  306. // constant_time_eq_int acts like |constant_time_eq_w| but works on int
  307. // values.
  308. static inline crypto_word_t constant_time_eq_int(int a, int b) {
  309. return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
  310. }
  311. // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
  312. // mask.
  313. static inline uint8_t constant_time_eq_int_8(int a, int b) {
  314. return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
  315. }
  316. // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
  317. // 1s or all 0s (as returned by the methods above), the select methods return
  318. // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
  319. static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
  320. crypto_word_t a,
  321. crypto_word_t b) {
  322. return (mask & a) | (~mask & b);
  323. }
  324. // constant_time_select_8 acts like |constant_time_select| but operates on
  325. // 8-bit values.
  326. static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
  327. uint8_t b) {
  328. return (uint8_t)(constant_time_select_w(mask, a, b));
  329. }
  330. // constant_time_select_int acts like |constant_time_select| but operates on
  331. // ints.
  332. static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
  333. return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
  334. (crypto_word_t)(b)));
  335. }
  336. #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
  337. // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
  338. // of memory as secret. Secret data is tracked as it flows to registers and
  339. // other parts of a memory. If secret data is used as a condition for a branch,
  340. // or as a memory index, it will trigger warnings in valgrind.
  341. #define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
  342. // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
  343. // region of memory as public. Public data is not subject to constant-time
  344. // rules.
  345. #define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
  346. #else
  347. #define CONSTTIME_SECRET(x, y)
  348. #define CONSTTIME_DECLASSIFY(x, y)
  349. #endif // BORINGSSL_CONSTANT_TIME_VALIDATION
  350. // Thread-safe initialisation.
  351. #if !defined(OPENSSL_THREADS)
  352. typedef uint32_t CRYPTO_once_t;
  353. #define CRYPTO_ONCE_INIT 0
  354. #elif defined(OPENSSL_WINDOWS_THREADS)
  355. typedef INIT_ONCE CRYPTO_once_t;
  356. #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
  357. #elif defined(OPENSSL_PTHREADS)
  358. typedef pthread_once_t CRYPTO_once_t;
  359. #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
  360. #else
  361. #error "Unknown threading library"
  362. #endif
  363. // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
  364. // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
  365. // then they will block until |init| completes, but |init| will have only been
  366. // called once.
  367. //
  368. // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
  369. // the value |CRYPTO_ONCE_INIT|.
  370. OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
  371. // Reference counting.
  372. // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
  373. #define CRYPTO_REFCOUNT_MAX 0xffffffff
  374. // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
  375. // value would overflow. It's safe for multiple threads to concurrently call
  376. // this or |CRYPTO_refcount_dec_and_test_zero| on the same
  377. // |CRYPTO_refcount_t|.
  378. OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
  379. // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
  380. // if it's zero, it crashes the address space.
  381. // if it's the maximum value, it returns zero.
  382. // otherwise, it atomically decrements it and returns one iff the resulting
  383. // value is zero.
  384. //
  385. // It's safe for multiple threads to concurrently call this or
  386. // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
  387. OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
  388. // Locks.
  389. //
  390. // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
  391. // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
  392. // a global lock. A global lock must be initialised to the value
  393. // |CRYPTO_STATIC_MUTEX_INIT|.
  394. //
  395. // |CRYPTO_MUTEX| can appear in public structures and so is defined in
  396. // thread.h as a structure large enough to fit the real type. The global lock is
  397. // a different type so it may be initialized with platform initializer macros.
  398. #if !defined(OPENSSL_THREADS)
  399. struct CRYPTO_STATIC_MUTEX {
  400. char padding; // Empty structs have different sizes in C and C++.
  401. };
  402. #define CRYPTO_STATIC_MUTEX_INIT { 0 }
  403. #elif defined(OPENSSL_WINDOWS_THREADS)
  404. struct CRYPTO_STATIC_MUTEX {
  405. SRWLOCK lock;
  406. };
  407. #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
  408. #elif defined(OPENSSL_PTHREADS)
  409. struct CRYPTO_STATIC_MUTEX {
  410. pthread_rwlock_t lock;
  411. };
  412. #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
  413. #else
  414. #error "Unknown threading library"
  415. #endif
  416. // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
  417. // |CRYPTO_STATIC_MUTEX|.
  418. OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
  419. // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
  420. // read lock, but none may have a write lock.
  421. OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
  422. // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
  423. // of lock on it.
  424. OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
  425. // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
  426. OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
  427. // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
  428. OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
  429. // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
  430. OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
  431. // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
  432. // have a read lock, but none may have a write lock. The |lock| variable does
  433. // not need to be initialised by any function, but must have been statically
  434. // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
  435. OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
  436. struct CRYPTO_STATIC_MUTEX *lock);
  437. // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
  438. // any type of lock on it. The |lock| variable does not need to be initialised
  439. // by any function, but must have been statically initialised with
  440. // |CRYPTO_STATIC_MUTEX_INIT|.
  441. OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
  442. struct CRYPTO_STATIC_MUTEX *lock);
  443. // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
  444. OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
  445. struct CRYPTO_STATIC_MUTEX *lock);
  446. // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
  447. OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
  448. struct CRYPTO_STATIC_MUTEX *lock);
  449. #if defined(__cplusplus)
  450. extern "C++" {
  451. BSSL_NAMESPACE_BEGIN
  452. namespace internal {
  453. // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
  454. template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
  455. class MutexLockBase {
  456. public:
  457. explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
  458. assert(mu_ != nullptr);
  459. LockFunc(mu_);
  460. }
  461. ~MutexLockBase() { ReleaseFunc(mu_); }
  462. MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
  463. MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
  464. delete;
  465. private:
  466. CRYPTO_MUTEX *const mu_;
  467. };
  468. } // namespace internal
  469. using MutexWriteLock =
  470. internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
  471. using MutexReadLock =
  472. internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
  473. BSSL_NAMESPACE_END
  474. } // extern "C++"
  475. #endif // defined(__cplusplus)
  476. // Thread local storage.
  477. // thread_local_data_t enumerates the types of thread-local data that can be
  478. // stored.
  479. typedef enum {
  480. OPENSSL_THREAD_LOCAL_ERR = 0,
  481. OPENSSL_THREAD_LOCAL_RAND,
  482. OPENSSL_THREAD_LOCAL_TEST,
  483. NUM_OPENSSL_THREAD_LOCALS,
  484. } thread_local_data_t;
  485. // thread_local_destructor_t is the type of a destructor function that will be
  486. // called when a thread exits and its thread-local storage needs to be freed.
  487. typedef void (*thread_local_destructor_t)(void *);
  488. // CRYPTO_get_thread_local gets the pointer value that is stored for the
  489. // current thread for the given index, or NULL if none has been set.
  490. OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
  491. // CRYPTO_set_thread_local sets a pointer value for the current thread at the
  492. // given index. This function should only be called once per thread for a given
  493. // |index|: rather than update the pointer value itself, update the data that
  494. // is pointed to.
  495. //
  496. // The destructor function will be called when a thread exits to free this
  497. // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
  498. // |index| should have the same |destructor| argument. The destructor may be
  499. // called with a NULL argument if a thread that never set a thread-local
  500. // pointer for |index|, exits. The destructor may be called concurrently with
  501. // different arguments.
  502. //
  503. // This function returns one on success or zero on error. If it returns zero
  504. // then |destructor| has been called with |value| already.
  505. OPENSSL_EXPORT int CRYPTO_set_thread_local(
  506. thread_local_data_t index, void *value,
  507. thread_local_destructor_t destructor);
  508. // ex_data
  509. typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
  510. DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
  511. // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
  512. // supports ex_data. It should defined as a static global within the module
  513. // which defines that type.
  514. typedef struct {
  515. struct CRYPTO_STATIC_MUTEX lock;
  516. STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
  517. // num_reserved is one if the ex_data index zero is reserved for legacy
  518. // |TYPE_get_app_data| functions.
  519. uint8_t num_reserved;
  520. } CRYPTO_EX_DATA_CLASS;
  521. #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
  522. #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
  523. {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
  524. // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
  525. // it to |*out_index|. Each class of object should provide a wrapper function
  526. // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
  527. // zero otherwise.
  528. OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
  529. int *out_index, long argl,
  530. void *argp,
  531. CRYPTO_EX_free *free_func);
  532. // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
  533. // of object should provide a wrapper function.
  534. OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
  535. // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
  536. // if no such index exists. Each class of object should provide a wrapper
  537. // function.
  538. OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
  539. // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
  540. OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
  541. // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
  542. // object of the given class.
  543. OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
  544. void *obj, CRYPTO_EX_DATA *ad);
  545. // Endianness conversions.
  546. #if defined(__GNUC__) && __GNUC__ >= 2
  547. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  548. return __builtin_bswap32(x);
  549. }
  550. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  551. return __builtin_bswap64(x);
  552. }
  553. #elif defined(_MSC_VER)
  554. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  555. #include <stdlib.h>
  556. OPENSSL_MSVC_PRAGMA(warning(pop))
  557. #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
  558. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  559. return _byteswap_ulong(x);
  560. }
  561. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  562. return _byteswap_uint64(x);
  563. }
  564. #else
  565. static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  566. x = (x >> 16) | (x << 16);
  567. x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
  568. return x;
  569. }
  570. static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  571. return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
  572. }
  573. #endif
  574. // Language bug workarounds.
  575. //
  576. // Most C standard library functions are undefined if passed NULL, even when the
  577. // corresponding length is zero. This gives them (and, in turn, all functions
  578. // which call them) surprising behavior on empty arrays. Some compilers will
  579. // miscompile code due to this rule. See also
  580. // https://www.imperialviolet.org/2016/06/26/nonnull.html
  581. //
  582. // These wrapper functions behave the same as the corresponding C standard
  583. // functions, but behave as expected when passed NULL if the length is zero.
  584. //
  585. // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
  586. // C++ defines |memchr| as a const-correct overload.
  587. #if defined(__cplusplus)
  588. extern "C++" {
  589. static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
  590. if (n == 0) {
  591. return NULL;
  592. }
  593. return memchr(s, c, n);
  594. }
  595. static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
  596. if (n == 0) {
  597. return NULL;
  598. }
  599. return memchr(s, c, n);
  600. }
  601. } // extern "C++"
  602. #else // __cplusplus
  603. static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
  604. if (n == 0) {
  605. return NULL;
  606. }
  607. return memchr(s, c, n);
  608. }
  609. #endif // __cplusplus
  610. static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
  611. if (n == 0) {
  612. return 0;
  613. }
  614. return memcmp(s1, s2, n);
  615. }
  616. static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
  617. if (n == 0) {
  618. return dst;
  619. }
  620. return memcpy(dst, src, n);
  621. }
  622. static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
  623. if (n == 0) {
  624. return dst;
  625. }
  626. return memmove(dst, src, n);
  627. }
  628. static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
  629. if (n == 0) {
  630. return dst;
  631. }
  632. return memset(dst, c, n);
  633. }
  634. #if defined(BORINGSSL_FIPS)
  635. // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
  636. // fails. It prevents any further cryptographic operations by the current
  637. // process.
  638. void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
  639. #endif
  640. #if defined(__cplusplus)
  641. } // extern C
  642. #endif
  643. #endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H