No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
hace 8 años
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
hace 8 años
Don't allow EVP_PKEY_RSA2. OpenSSL accepts both OID 2.5.8.1.1 and OID 1.2.840.113549.1.1.1 for RSA public keys. The latter comes from RFC 3279 and is widely implemented. The former comes from the ITU-T version of X.509. Interestingly, 2.5.8.1.1 actually has a parameter, which OpenSSL ignores: rsa ALGORITHM ::= { KeySize IDENTIFIED BY id-ea-rsa } KeySize ::= INTEGER Remove support for 2.5.8.1.1 completely. In tests with a self-signed certificate and code inspection: - IE11 on Win8 does not accept the certificate in a TLS handshake at all. Such a certificate is fatal and unbypassable. However Microsoft's libraries do seem to parse it, so Chrome on Windows allows one to click through the error. I'm guessing either the X.509 stack accepts it while the TLS stack doesn't recognize it as RSA or the X.509 stack is able to lightly parse it but not actually understand the key. (The system certificate UI didn't display it as an RSA key, so probably the latter?) - Apple's certificate library on 10.11.2 does not parse the certificate at all. Both Safari and Chrome on Mac treat it as a fatal and unbypassable error. - mozilla::pkix, from code inspection, does not accept such certificates. However, Firefox does allow clicking through the error. This is likely a consequence of mozilla::pkix and NSS having different ASN.1 stacks. I did not test this, but I expect this means Chrome on Linux also accepts it. Given IE and Safari's results, it should be safe to simply remove this. Firefox's data point is weak (perhaps someone is relying on being able to click-through a self-signed 2.5.8.1.1 certificate), but it does further ensure no valid certificate could be doing this. The following is the 2.5.8.1.1 certificate I constructed to test with. The private key is key.pem from ssl/test/runner: -----BEGIN CERTIFICATE----- MIICVTCCAb6gAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50 ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGcMAoGBFUIAQECAgQAA4GNADCBiQKBgQDY K8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLciHnAj kXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfVW28t Q+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNVHQ4E FgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4fZbf6 Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQAIZuUICtYv w3cbpCGX6HNCtyI0guOfbytcdwzRkQaCsYNSDrTxrSSWxHwqg3Dl/RlvS+T3Yaua Xkioadstwt7GDP6MwpIpdbjchh0XZd3kjdJWqXSvihUDpRePNjNS2LmJW8GWfB3c F6UVyNK+wcApRY+goREIhyYupAHUexR7FQ== -----END CERTIFICATE----- BUG=522228 Change-Id: I031d03c0f53a16cbc749c4a5d8be6efca50dc863 Reviewed-on: https://boringssl-review.googlesource.com/6852 Reviewed-by: Adam Langley <alangley@gmail.com>
hace 8 años
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #ifndef OPENSSL_HEADER_EVP_H
  57. #define OPENSSL_HEADER_EVP_H
  58. #include <openssl/base.h>
  59. #include <openssl/thread.h>
  60. // OpenSSL included digest and cipher functions in this header so we include
  61. // them for users that still expect that.
  62. //
  63. // TODO(fork): clean up callers so that they include what they use.
  64. #include <openssl/aead.h>
  65. #include <openssl/base64.h>
  66. #include <openssl/cipher.h>
  67. #include <openssl/digest.h>
  68. #include <openssl/nid.h>
  69. #if defined(__cplusplus)
  70. extern "C" {
  71. #endif
  72. // EVP abstracts over public/private key algorithms.
  73. // Public key objects.
  74. // EVP_PKEY_new creates a new, empty public-key object and returns it or NULL
  75. // on allocation failure.
  76. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void);
  77. // EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey|
  78. // itself.
  79. OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey);
  80. // EVP_PKEY_up_ref increments the reference count of |pkey| and returns one.
  81. OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey);
  82. // EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by
  83. // custom implementations which do not expose key material and parameters. It is
  84. // an error to attempt to duplicate, export, or compare an opaque key.
  85. OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey);
  86. // EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if
  87. // not and a negative number on error.
  88. //
  89. // WARNING: this differs from the traditional return value of a "cmp"
  90. // function.
  91. OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b);
  92. // EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters
  93. // of |from|. It returns one on success and zero on error.
  94. OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from);
  95. // EVP_PKEY_missing_parameters returns one if |pkey| is missing needed
  96. // parameters or zero if not, or if the algorithm doesn't take parameters.
  97. OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey);
  98. // EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by
  99. // |pkey|. For an RSA key, this returns the number of bytes needed to represent
  100. // the modulus. For an EC key, this returns the maximum size of a DER-encoded
  101. // ECDSA signature.
  102. OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey);
  103. // EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this
  104. // returns the bit length of the modulus. For an EC key, this returns the bit
  105. // length of the group order.
  106. OPENSSL_EXPORT int EVP_PKEY_bits(EVP_PKEY *pkey);
  107. // EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*|
  108. // values.
  109. OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey);
  110. // EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef|
  111. // otherwise.
  112. OPENSSL_EXPORT int EVP_PKEY_type(int nid);
  113. // Getting and setting concrete public key types.
  114. //
  115. // The following functions get and set the underlying public key in an
  116. // |EVP_PKEY| object. The |set1| functions take an additional reference to the
  117. // underlying key and return one on success or zero on error. The |assign|
  118. // functions adopt the caller's reference. The |get1| functions return a fresh
  119. // reference to the underlying object or NULL if |pkey| is not of the correct
  120. // type. The |get0| functions behave the same but return a non-owning
  121. // pointer.
  122. OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key);
  123. OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key);
  124. OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey);
  125. OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
  126. OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key);
  127. OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key);
  128. OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(EVP_PKEY *pkey);
  129. OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
  130. OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
  131. OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
  132. OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(EVP_PKEY *pkey);
  133. OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);
  134. // EVP_PKEY_new_ed25519_public returns a newly allocated |EVP_PKEY| wrapping an
  135. // Ed25519 public key, or NULL on allocation error.
  136. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_public(
  137. const uint8_t public_key[32]);
  138. // EVP_PKEY_new_ed25519_private returns a newly allocated |EVP_PKEY| wrapping an
  139. // Ed25519 private key, or NULL on allocation error.
  140. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_private(
  141. const uint8_t private_key[64]);
  142. #define EVP_PKEY_NONE NID_undef
  143. #define EVP_PKEY_RSA NID_rsaEncryption
  144. #define EVP_PKEY_DSA NID_dsa
  145. #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey
  146. #define EVP_PKEY_ED25519 NID_ED25519
  147. // EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of
  148. // the given type. The |type| argument should be one of the |EVP_PKEY_*|
  149. // values.
  150. OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key);
  151. // EVP_PKEY_set_type sets the type of |pkey| to |type|, which should be one of
  152. // the |EVP_PKEY_*| values. It returns one if successful or zero otherwise. If
  153. // |pkey| is NULL, it simply reports whether the type is known.
  154. OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type);
  155. // EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns
  156. // one if they match, zero if not, or a negative number of on error.
  157. //
  158. // WARNING: the return value differs from the usual return value convention.
  159. OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a,
  160. const EVP_PKEY *b);
  161. // ASN.1 functions
  162. // EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure
  163. // (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated
  164. // |EVP_PKEY| or NULL on error.
  165. //
  166. // The caller must check the type of the parsed public key to ensure it is
  167. // suitable and validate other desired key properties such as RSA modulus size
  168. // or EC curve.
  169. OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs);
  170. // EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo
  171. // structure (RFC 5280) and appends the result to |cbb|. It returns one on
  172. // success and zero on error.
  173. OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key);
  174. // EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC
  175. // 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY|
  176. // or NULL on error.
  177. //
  178. // The caller must check the type of the parsed private key to ensure it is
  179. // suitable and validate other desired key properties such as RSA modulus size
  180. // or EC curve.
  181. //
  182. // A PrivateKeyInfo ends with an optional set of attributes. These are not
  183. // processed and so this function will silently ignore any trailing data in the
  184. // structure.
  185. OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs);
  186. // EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo
  187. // structure (RFC 5208) and appends the result to |cbb|. It returns one on
  188. // success and zero on error.
  189. OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key);
  190. // EVP_set_buggy_rsa_parser configures whether |RSA_parse_public_key_buggy| is
  191. // used by |EVP_parse_public_key|. By default, it is used.
  192. OPENSSL_EXPORT void EVP_set_buggy_rsa_parser(int buggy);
  193. // Signing
  194. // EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and
  195. // |pkey|. The |ctx| argument must have been initialised with
  196. // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
  197. // operation will be written to |*pctx|; this can be used to set alternative
  198. // signing options.
  199. //
  200. // For single-shot signing algorithms which do not use a pre-hash, such as
  201. // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is
  202. // present so the API is uniform. See |EVP_DigestSign|.
  203. //
  204. // It returns one on success, or zero on error.
  205. OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
  206. const EVP_MD *type, ENGINE *e,
  207. EVP_PKEY *pkey);
  208. // EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will
  209. // be signed in |EVP_DigestSignFinal|. It returns one.
  210. //
  211. // This function performs a streaming signing operation and will fail for
  212. // signature algorithms which do not support this. Use |EVP_DigestSign| for a
  213. // single-shot operation.
  214. OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data,
  215. size_t len);
  216. // EVP_DigestSignFinal signs the data that has been included by one or more
  217. // calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is
  218. // set to the maximum number of output bytes. Otherwise, on entry,
  219. // |*out_sig_len| must contain the length of the |out_sig| buffer. If the call
  220. // is successful, the signature is written to |out_sig| and |*out_sig_len| is
  221. // set to its length.
  222. //
  223. // This function performs a streaming signing operation and will fail for
  224. // signature algorithms which do not support this. Use |EVP_DigestSign| for a
  225. // single-shot operation.
  226. //
  227. // It returns one on success, or zero on error.
  228. OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig,
  229. size_t *out_sig_len);
  230. // EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig|
  231. // is NULL then |*out_sig_len| is set to the maximum number of output
  232. // bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the
  233. // |out_sig| buffer. If the call is successful, the signature is written to
  234. // |out_sig| and |*out_sig_len| is set to its length.
  235. //
  236. // It returns one on success and zero on error.
  237. OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig,
  238. size_t *out_sig_len, const uint8_t *data,
  239. size_t data_len);
  240. // Verifying
  241. // EVP_DigestVerifyInit sets up |ctx| for a signature verification operation
  242. // with |type| and |pkey|. The |ctx| argument must have been initialised with
  243. // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
  244. // operation will be written to |*pctx|; this can be used to set alternative
  245. // signing options.
  246. //
  247. // For single-shot signing algorithms which do not use a pre-hash, such as
  248. // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is
  249. // present so the API is uniform. See |EVP_DigestVerify|.
  250. //
  251. // It returns one on success, or zero on error.
  252. OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
  253. const EVP_MD *type, ENGINE *e,
  254. EVP_PKEY *pkey);
  255. // EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which
  256. // will be verified by |EVP_DigestVerifyFinal|. It returns one.
  257. //
  258. // This function performs streaming signature verification and will fail for
  259. // signature algorithms which do not support this. Use |EVP_PKEY_verify_message|
  260. // for a single-shot verification.
  261. OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data,
  262. size_t len);
  263. // EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid
  264. // signature for the data that has been included by one or more calls to
  265. // |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise.
  266. //
  267. // This function performs streaming signature verification and will fail for
  268. // signature algorithms which do not support this. Use |EVP_PKEY_verify_message|
  269. // for a single-shot verification.
  270. OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig,
  271. size_t sig_len);
  272. // EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid
  273. // signature for |data|. It returns one on success or zero on error.
  274. OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig,
  275. size_t sig_len, const uint8_t *data,
  276. size_t len);
  277. // Signing (old functions)
  278. // EVP_SignInit_ex configures |ctx|, which must already have been initialised,
  279. // for a fresh signing operation using the hash function |type|. It returns one
  280. // on success and zero otherwise.
  281. //
  282. // (In order to initialise |ctx|, either obtain it initialised with
  283. // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.)
  284. OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
  285. ENGINE *impl);
  286. // EVP_SignInit is a deprecated version of |EVP_SignInit_ex|.
  287. //
  288. // TODO(fork): remove.
  289. OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);
  290. // EVP_SignUpdate appends |len| bytes from |data| to the data which will be
  291. // signed in |EVP_SignFinal|.
  292. OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data,
  293. size_t len);
  294. // EVP_SignFinal signs the data that has been included by one or more calls to
  295. // |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry,
  296. // |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The
  297. // actual size of the signature is written to |*out_sig_len|.
  298. //
  299. // It returns one on success and zero otherwise.
  300. //
  301. // It does not modify |ctx|, thus it's possible to continue to use |ctx| in
  302. // order to sign a longer message.
  303. OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig,
  304. unsigned int *out_sig_len, EVP_PKEY *pkey);
  305. // Verifying (old functions)
  306. // EVP_VerifyInit_ex configures |ctx|, which must already have been
  307. // initialised, for a fresh signature verification operation using the hash
  308. // function |type|. It returns one on success and zero otherwise.
  309. //
  310. // (In order to initialise |ctx|, either obtain it initialised with
  311. // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.)
  312. OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
  313. ENGINE *impl);
  314. // EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|.
  315. //
  316. // TODO(fork): remove.
  317. OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);
  318. // EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be
  319. // signed in |EVP_VerifyFinal|.
  320. OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data,
  321. size_t len);
  322. // EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid
  323. // signature, by |pkey|, for the data that has been included by one or more
  324. // calls to |EVP_VerifyUpdate|.
  325. //
  326. // It returns one on success and zero otherwise.
  327. //
  328. // It does not modify |ctx|, thus it's possible to continue to use |ctx| in
  329. // order to sign a longer message.
  330. OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig,
  331. size_t sig_len, EVP_PKEY *pkey);
  332. // Printing
  333. // EVP_PKEY_print_public prints a textual representation of the public key in
  334. // |pkey| to |out|. Returns one on success or zero otherwise.
  335. OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
  336. int indent, ASN1_PCTX *pctx);
  337. // EVP_PKEY_print_private prints a textual representation of the private key in
  338. // |pkey| to |out|. Returns one on success or zero otherwise.
  339. OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
  340. int indent, ASN1_PCTX *pctx);
  341. // EVP_PKEY_print_params prints a textual representation of the parameters in
  342. // |pkey| to |out|. Returns one on success or zero otherwise.
  343. OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
  344. int indent, ASN1_PCTX *pctx);
  345. // Password stretching.
  346. //
  347. // Password stretching functions take a low-entropy password and apply a slow
  348. // function that results in a key suitable for use in symmetric
  349. // cryptography.
  350. // PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password|
  351. // and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It
  352. // returns one on success and zero on error.
  353. OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len,
  354. const uint8_t *salt, size_t salt_len,
  355. unsigned iterations, const EVP_MD *digest,
  356. size_t key_len, uint8_t *out_key);
  357. // PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest|
  358. // fixed to |EVP_sha1|.
  359. OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password,
  360. size_t password_len,
  361. const uint8_t *salt, size_t salt_len,
  362. unsigned iterations, size_t key_len,
  363. uint8_t *out_key);
  364. // EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using
  365. // scrypt, as described in RFC 7914, and writes the result to |out_key|. It
  366. // returns one on success and zero on error.
  367. //
  368. // |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the
  369. // cost of the operation. If the memory required exceeds |max_mem|, the
  370. // operation will fail instead. If |max_mem| is zero, a defult limit of 32MiB
  371. // will be used.
  372. OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len,
  373. const uint8_t *salt, size_t salt_len,
  374. uint64_t N, uint64_t r, uint64_t p,
  375. size_t max_mem, uint8_t *out_key,
  376. size_t key_len);
  377. // Public key contexts.
  378. //
  379. // |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or
  380. // encrypting) that uses a public key.
  381. // EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It
  382. // returns the context or NULL on error.
  383. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e);
  384. // EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id|
  385. // (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where
  386. // |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass
  387. // it. It returns the context or NULL on error.
  388. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e);
  389. // EVP_PKEY_CTX_free frees |ctx| and the data it owns.
  390. OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx);
  391. // EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the
  392. // state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error.
  393. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx);
  394. // EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|.
  395. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx);
  396. // EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It
  397. // should be called before |EVP_PKEY_sign|.
  398. //
  399. // It returns one on success or zero on error.
  400. OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx);
  401. // EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is
  402. // NULL, the maximum size of the signature is written to
  403. // |out_sig_len|. Otherwise, |*sig_len| must contain the number of bytes of
  404. // space available at |sig|. If sufficient, the signature will be written to
  405. // |sig| and |*sig_len| updated with the true length.
  406. //
  407. // This function expects a pre-hashed input and will fail for signature
  408. // algorithms which do not support this. Use |EVP_DigestSignInit| to sign an
  409. // unhashed input.
  410. //
  411. // WARNING: Setting |sig| to NULL only gives the maximum size of the
  412. // signature. The actual signature may be smaller.
  413. //
  414. // It returns one on success or zero on error. (Note: this differs from
  415. // OpenSSL, which can also return negative values to indicate an error. )
  416. OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig,
  417. size_t *sig_len, const uint8_t *digest,
  418. size_t digest_len);
  419. // EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature
  420. // verification operation. It should be called before |EVP_PKEY_verify|.
  421. //
  422. // It returns one on success or zero on error.
  423. OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx);
  424. // EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid
  425. // signature for |digest|.
  426. //
  427. // This function expects a pre-hashed input and will fail for signature
  428. // algorithms which do not support this. Use |EVP_DigestVerifyInit| to verify a
  429. // signature given the unhashed input.
  430. //
  431. // It returns one on success or zero on error.
  432. OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig,
  433. size_t sig_len, const uint8_t *digest,
  434. size_t digest_len);
  435. // EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption
  436. // operation. It should be called before |EVP_PKEY_encrypt|.
  437. //
  438. // It returns one on success or zero on error.
  439. OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx);
  440. // EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the
  441. // maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len|
  442. // must contain the number of bytes of space available at |out|. If sufficient,
  443. // the ciphertext will be written to |out| and |*out_len| updated with the true
  444. // length.
  445. //
  446. // WARNING: Setting |out| to NULL only gives the maximum size of the
  447. // ciphertext. The actual ciphertext may be smaller.
  448. //
  449. // It returns one on success or zero on error.
  450. OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
  451. size_t *out_len, const uint8_t *in,
  452. size_t in_len);
  453. // EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption
  454. // operation. It should be called before |EVP_PKEY_decrypt|.
  455. //
  456. // It returns one on success or zero on error.
  457. OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx);
  458. // EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the
  459. // maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len|
  460. // must contain the number of bytes of space available at |out|. If sufficient,
  461. // the ciphertext will be written to |out| and |*out_len| updated with the true
  462. // length.
  463. //
  464. // WARNING: Setting |out| to NULL only gives the maximum size of the
  465. // plaintext. The actual plaintext may be smaller.
  466. //
  467. // It returns one on success or zero on error.
  468. OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
  469. size_t *out_len, const uint8_t *in,
  470. size_t in_len);
  471. // EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key
  472. // decryption operation. It should be called before |EVP_PKEY_verify_recover|.
  473. //
  474. // Public-key decryption is a very obscure operation that is only implemented
  475. // by RSA keys. It is effectively a signature verification operation that
  476. // returns the signed message directly. It is almost certainly not what you
  477. // want.
  478. //
  479. // It returns one on success or zero on error.
  480. OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx);
  481. // EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is
  482. // NULL, the maximum size of the plaintext is written to |out_len|. Otherwise,
  483. // |*out_len| must contain the number of bytes of space available at |out|. If
  484. // sufficient, the ciphertext will be written to |out| and |*out_len| updated
  485. // with the true length.
  486. //
  487. // WARNING: Setting |out| to NULL only gives the maximum size of the
  488. // plaintext. The actual plaintext may be smaller.
  489. //
  490. // See the warning about this operation in |EVP_PKEY_verify_recover_init|. It
  491. // is probably not what you want.
  492. //
  493. // It returns one on success or zero on error.
  494. OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
  495. size_t *out_len, const uint8_t *sig,
  496. size_t siglen);
  497. // EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation
  498. // operation. It should be called before |EVP_PKEY_derive_set_peer| and
  499. // |EVP_PKEY_derive|.
  500. //
  501. // It returns one on success or zero on error.
  502. OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx);
  503. // EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation
  504. // by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For
  505. // example, this is used to set the peer's key in (EC)DH.) It returns one on
  506. // success and zero on error.
  507. OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer);
  508. // EVP_PKEY_derive derives a shared key between the two keys configured in
  509. // |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the
  510. // amount of space at |key|. If sufficient then the shared key will be written
  511. // to |key| and |*out_key_len| will be set to the length. If |key| is NULL then
  512. // |out_key_len| will be set to the maximum length.
  513. //
  514. // WARNING: Setting |out| to NULL only gives the maximum size of the key. The
  515. // actual key may be smaller.
  516. //
  517. // It returns one on success and zero on error.
  518. OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key,
  519. size_t *out_key_len);
  520. // EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation
  521. // operation. It should be called before |EVP_PKEY_keygen|.
  522. //
  523. // It returns one on success or zero on error.
  524. OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
  525. // EVP_PKEY_keygen performs a key generation operation using the values from
  526. // |ctx| and sets |*ppkey| to a fresh |EVP_PKEY| containing the resulting key.
  527. // It returns one on success or zero on error.
  528. OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);
  529. // Generic control functions.
  530. // EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a
  531. // signature operation. It returns one on success or zero on error.
  532. OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx,
  533. const EVP_MD *md);
  534. // EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a
  535. // signature operation. It returns one on success or zero on error.
  536. OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx,
  537. const EVP_MD **out_md);
  538. // RSA specific control functions.
  539. // EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one
  540. // of the |RSA_*_PADDING| values. Returns one on success or zero on error.
  541. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding);
  542. // EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding
  543. // value, which is one of the |RSA_*_PADDING| values. Returns one on success or
  544. // zero on error.
  545. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx,
  546. int *out_padding);
  547. // EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded
  548. // signature. A value of -1 cause the salt to be the same length as the digest
  549. // in the signature. A value of -2 causes the salt to be the maximum length
  550. // that will fit when signing and recovered from the signature when verifying.
  551. // Otherwise the value gives the size of the salt in bytes.
  552. //
  553. // If unsure, use -1.
  554. //
  555. // Returns one on success or zero on error.
  556. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,
  557. int salt_len);
  558. // EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of
  559. // a PSS-padded signature. See the documentation for
  560. // |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it
  561. // can take.
  562. //
  563. // Returns one on success or zero on error.
  564. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,
  565. int *out_salt_len);
  566. // EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus,
  567. // in bits, for key generation. Returns one on success or zero on
  568. // error.
  569. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx,
  570. int bits);
  571. // EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key
  572. // generation. Returns one on success or zero on error.
  573. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx,
  574. BIGNUM *e);
  575. // EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding.
  576. // Returns one on success or zero on error.
  577. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx,
  578. const EVP_MD *md);
  579. // EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in
  580. // OAEP padding. Returns one on success or zero on error.
  581. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx,
  582. const EVP_MD **out_md);
  583. // EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns
  584. // one on success or zero on error.
  585. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx,
  586. const EVP_MD *md);
  587. // EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in
  588. // MGF1. Returns one on success or zero on error.
  589. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx,
  590. const EVP_MD **out_md);
  591. // EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the
  592. // label used in OAEP. DANGER: On success, this call takes ownership of |label|
  593. // and will call |OPENSSL_free| on it when |ctx| is destroyed.
  594. //
  595. // Returns one on success or zero on error.
  596. OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
  597. uint8_t *label,
  598. size_t label_len);
  599. // EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal
  600. // buffer containing the OAEP label (which may be NULL) and returns the length
  601. // of the label or a negative value on error.
  602. //
  603. // WARNING: the return value differs from the usual return value convention.
  604. OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
  605. const uint8_t **out_label);
  606. // Deprecated functions.
  607. // EVP_PKEY_DH is defined for compatibility, but it is impossible to create an
  608. // |EVP_PKEY| of that type.
  609. #define EVP_PKEY_DH NID_dhKeyAgreement
  610. // EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID
  611. // 2.5.8.1.1), but is no longer accepted.
  612. #define EVP_PKEY_RSA2 NID_rsa
  613. // OpenSSL_add_all_algorithms does nothing.
  614. OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void);
  615. // OPENSSL_add_all_algorithms_conf does nothing.
  616. OPENSSL_EXPORT void OPENSSL_add_all_algorithms_conf(void);
  617. // OpenSSL_add_all_ciphers does nothing.
  618. OPENSSL_EXPORT void OpenSSL_add_all_ciphers(void);
  619. // OpenSSL_add_all_digests does nothing.
  620. OPENSSL_EXPORT void OpenSSL_add_all_digests(void);
  621. // EVP_cleanup does nothing.
  622. OPENSSL_EXPORT void EVP_cleanup(void);
  623. OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted(
  624. void (*callback)(const EVP_CIPHER *cipher, const char *name,
  625. const char *unused, void *arg),
  626. void *arg);
  627. OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher,
  628. const char *name,
  629. const char *unused,
  630. void *arg),
  631. void *arg);
  632. // i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER
  633. // structure. If |outp| is not NULL then the result is written to |*outp| and
  634. // |*outp| is advanced just past the output. It returns the number of bytes in
  635. // the result, whether written or not, or a negative value on error.
  636. //
  637. // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure.
  638. // EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure.
  639. //
  640. // Use |RSA_marshal_private_key| or |EC_marshal_private_key| instead.
  641. OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp);
  642. // i2d_PublicKey marshals a public key from |key| to a type-specific format.
  643. // If |outp| is not NULL then the result is written to |*outp| and
  644. // |*outp| is advanced just past the output. It returns the number of bytes in
  645. // the result, whether written or not, or a negative value on error.
  646. //
  647. // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure.
  648. // EC keys are serialized as an EC point per SEC 1.
  649. //
  650. // Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead.
  651. OPENSSL_EXPORT int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp);
  652. // d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at
  653. // |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
  654. // |*out|. Note that, even if |*out| is already non-NULL on entry, it will not
  655. // be written to. Rather, a fresh |EVP_PKEY| is allocated and the previous one
  656. // is freed. On successful exit, |*inp| is advanced past the DER structure. It
  657. // returns the result or NULL on error.
  658. //
  659. // This function tries to detect one of several formats. Instead, use
  660. // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an
  661. // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey.
  662. OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out,
  663. const uint8_t **inp, long len);
  664. // d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type
  665. // of the private key.
  666. //
  667. // This function tries to detect one of several formats. Instead, use
  668. // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an
  669. // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey.
  670. OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp,
  671. long len);
  672. // EVP_PKEY_get0_DH returns NULL.
  673. OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(EVP_PKEY *pkey);
  674. // Private structures.
  675. struct evp_pkey_st {
  676. CRYPTO_refcount_t references;
  677. // type contains one of the EVP_PKEY_* values or NID_undef and determines
  678. // which element (if any) of the |pkey| union is valid.
  679. int type;
  680. union {
  681. void *ptr;
  682. RSA *rsa;
  683. DSA *dsa;
  684. DH *dh;
  685. EC_KEY *ec;
  686. } pkey;
  687. // ameth contains a pointer to a method table that contains many ASN.1
  688. // methods for the key type.
  689. const EVP_PKEY_ASN1_METHOD *ameth;
  690. } /* EVP_PKEY */;
  691. #if defined(__cplusplus)
  692. } // extern C
  693. extern "C++" {
  694. namespace bssl {
  695. BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free)
  696. BORINGSSL_MAKE_DELETER(EVP_PKEY_CTX, EVP_PKEY_CTX_free)
  697. } // namespace bssl
  698. } // extern C++
  699. #endif
  700. #define EVP_R_BUFFER_TOO_SMALL 100
  701. #define EVP_R_COMMAND_NOT_SUPPORTED 101
  702. #define EVP_R_DECODE_ERROR 102
  703. #define EVP_R_DIFFERENT_KEY_TYPES 103
  704. #define EVP_R_DIFFERENT_PARAMETERS 104
  705. #define EVP_R_ENCODE_ERROR 105
  706. #define EVP_R_EXPECTING_AN_EC_KEY_KEY 106
  707. #define EVP_R_EXPECTING_AN_RSA_KEY 107
  708. #define EVP_R_EXPECTING_A_DSA_KEY 108
  709. #define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 109
  710. #define EVP_R_INVALID_DIGEST_LENGTH 110
  711. #define EVP_R_INVALID_DIGEST_TYPE 111
  712. #define EVP_R_INVALID_KEYBITS 112
  713. #define EVP_R_INVALID_MGF1_MD 113
  714. #define EVP_R_INVALID_OPERATION 114
  715. #define EVP_R_INVALID_PADDING_MODE 115
  716. #define EVP_R_INVALID_PSS_SALTLEN 116
  717. #define EVP_R_KEYS_NOT_SET 117
  718. #define EVP_R_MISSING_PARAMETERS 118
  719. #define EVP_R_NO_DEFAULT_DIGEST 119
  720. #define EVP_R_NO_KEY_SET 120
  721. #define EVP_R_NO_MDC2_SUPPORT 121
  722. #define EVP_R_NO_NID_FOR_CURVE 122
  723. #define EVP_R_NO_OPERATION_SET 123
  724. #define EVP_R_NO_PARAMETERS_SET 124
  725. #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 125
  726. #define EVP_R_OPERATON_NOT_INITIALIZED 126
  727. #define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 127
  728. #define EVP_R_UNSUPPORTED_ALGORITHM 128
  729. #define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 129
  730. #define EVP_R_NOT_A_PRIVATE_KEY 130
  731. #define EVP_R_INVALID_SIGNATURE 131
  732. #define EVP_R_MEMORY_LIMIT_EXCEEDED 132
  733. #define EVP_R_INVALID_PARAMETERS 133
  734. #endif // OPENSSL_HEADER_EVP_H