boringssl/crypto/ec/ec_test.cc

400 lines
16 KiB
C++
Raw Normal View History

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/obj.h>
#include "../test/test_util.h"
// kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field
// omitted.
static const uint8_t kECKeyWithoutPublic[] = {
0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0,
0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e,
0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77,
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
};
// kECKeySpecifiedCurve is the above key with P-256's parameters explicitly
// spelled out rather than using a named curve.
static const uint8_t kECKeySpecifiedCurve[] = {
0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa,
0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb,
0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc,
0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02,
0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01,
0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb,
0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15,
0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78,
0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04,
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5,
0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2,
0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc,
0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc,
0x63, 0x25, 0x51, 0x02, 0x01, 0x01,
};
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is incorrectly encoded without zero
// padding.
static const uint8_t kECKeyMissingZeros[] = {
0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a,
0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04,
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63,
0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1,
0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f,
0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57,
0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is encoded with the required zero
// padding.
static const uint8_t kECKeyWithZeros[] = {
0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1,
0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d,
0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3,
0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e,
0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
0x37, 0xbf, 0x51, 0xf5,
};
// DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the
// result or nullptr on error.
static bssl::UniquePtr<EC_KEY> DecodeECPrivateKey(const uint8_t *in,
size_t in_len) {
CBS cbs;
CBS_init(&cbs, in, in_len);
bssl::UniquePtr<EC_KEY> ret(EC_KEY_parse_private_key(&cbs, NULL));
if (!ret || CBS_len(&cbs) != 0) {
return nullptr;
}
return ret;
}
// EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It
// returns true on success or false on error.
static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) {
bssl::ScopedCBB cbb;
uint8_t *der;
size_t der_len;
if (!CBB_init(cbb.get(), 0) ||
!EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
out->assign(der, der + der_len);
OPENSSL_free(der);
return true;
}
TEST(ECTest, Encoding) {
bssl::UniquePtr<EC_KEY> key =
DecodeECPrivateKey(kECKeyWithoutPublic, sizeof(kECKeyWithoutPublic));
ASSERT_TRUE(key);
// Test that the encoding round-trips.
std::vector<uint8_t> out;
ASSERT_TRUE(EncodeECPrivateKey(&out, key.get()));
EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size()));
const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get());
ASSERT_TRUE(pub_key) << "Public key missing";
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
ASSERT_TRUE(x);
ASSERT_TRUE(y);
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp(
EC_KEY_get0_group(key.get()), pub_key, x.get(), y.get(), NULL));
bssl::UniquePtr<char> x_hex(BN_bn2hex(x.get()));
bssl::UniquePtr<char> y_hex(BN_bn2hex(y.get()));
ASSERT_TRUE(x_hex);
ASSERT_TRUE(y_hex);
EXPECT_STREQ(
"c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681",
x_hex.get());
EXPECT_STREQ(
"e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88",
y_hex.get());
}
TEST(ECTest, ZeroPadding) {
// Check that the correct encoding round-trips.
bssl::UniquePtr<EC_KEY> key =
DecodeECPrivateKey(kECKeyWithZeros, sizeof(kECKeyWithZeros));
ASSERT_TRUE(key);
std::vector<uint8_t> out;
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get()));
EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size()));
// Keys without leading zeros also parse, but they encode correctly.
key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros));
ASSERT_TRUE(key);
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get()));
EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size()));
}
TEST(ECTest, SpecifiedCurve) {
// Test keys with specified curves may be decoded.
bssl::UniquePtr<EC_KEY> key =
DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve));
ASSERT_TRUE(key);
// The group should have been interpreted as P-256.
EXPECT_EQ(NID_X9_62_prime256v1,
EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get())));
// Encoding the key should still use named form.
std::vector<uint8_t> out;
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get()));
EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size()));
}
TEST(ECTest, ArbitraryCurve) {
// Make a P-256 key and extract the affine coordinates.
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
ASSERT_TRUE(key);
ASSERT_TRUE(EC_KEY_generate_key(key.get()));
// Make an arbitrary curve which is identical to P-256.
static const uint8_t kP[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
static const uint8_t kA[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
};
static const uint8_t kB[] = {
0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd,
0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b,
};
static const uint8_t kX[] = {
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6,
0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb,
0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96,
};
static const uint8_t kY[] = {
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb,
0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31,
0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};
static const uint8_t kOrder[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17,
0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51,
};
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
ASSERT_TRUE(ctx);
bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> a(BN_bin2bn(kA, sizeof(kA), nullptr));
ASSERT_TRUE(a);
bssl::UniquePtr<BIGNUM> b(BN_bin2bn(kB, sizeof(kB), nullptr));
ASSERT_TRUE(b);
bssl::UniquePtr<BIGNUM> gx(BN_bin2bn(kX, sizeof(kX), nullptr));
ASSERT_TRUE(gx);
bssl::UniquePtr<BIGNUM> gy(BN_bin2bn(kY, sizeof(kY), nullptr));
ASSERT_TRUE(gy);
bssl::UniquePtr<BIGNUM> order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr));
ASSERT_TRUE(order);
bssl::UniquePtr<EC_GROUP> group(
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get()));
ASSERT_TRUE(group);
bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group.get()));
ASSERT_TRUE(generator);
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(
group.get(), generator.get(), gx.get(), gy.get(), ctx.get()));
ASSERT_TRUE(EC_GROUP_set_generator(group.get(), generator.get(), order.get(),
BN_value_one()));
// |group| should not have a curve name.
EXPECT_EQ(NID_undef, EC_GROUP_get_curve_name(group.get()));
// Copy |key| to |key2| using |group|.
bssl::UniquePtr<EC_KEY> key2(EC_KEY_new());
ASSERT_TRUE(key2);
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group.get()));
ASSERT_TRUE(point);
bssl::UniquePtr<BIGNUM> x(BN_new()), y(BN_new());
ASSERT_TRUE(x);
ASSERT_TRUE(EC_KEY_set_group(key2.get(), group.get()));
ASSERT_TRUE(
EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get())));
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp(
EC_KEY_get0_group(key.get()), EC_KEY_get0_public_key(key.get()), x.get(),
y.get(), nullptr));
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(),
x.get(), y.get(), nullptr));
ASSERT_TRUE(EC_KEY_set_public_key(key2.get(), point.get()));
// The key must be valid according to the new group too.
EXPECT_TRUE(EC_KEY_check_key(key2.get()));
}
class ECCurveTest : public testing::TestWithParam<EC_builtin_curve> {};
TEST_P(ECCurveTest, SetAffine) {
// Generate an EC_KEY.
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid));
ASSERT_TRUE(key);
ASSERT_TRUE(EC_KEY_generate_key(key.get()));
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
EXPECT_TRUE(
EC_POINT_is_on_curve(group, EC_KEY_get0_public_key(key.get()), nullptr));
// Get the public key's coordinates.
bssl::UniquePtr<BIGNUM> x(BN_new());
ASSERT_TRUE(x);
bssl::UniquePtr<BIGNUM> y(BN_new());
ASSERT_TRUE(y);
EXPECT_TRUE(EC_POINT_get_affine_coordinates_GFp(
group, EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr));
// Points on the curve should be accepted.
auto point = bssl::UniquePtr<EC_POINT>(EC_POINT_new(group));
ASSERT_TRUE(point);
EXPECT_TRUE(EC_POINT_set_affine_coordinates_GFp(group, point.get(), x.get(),
y.get(), nullptr));
// Subtract one from |y| to make the point no longer on the curve.
EXPECT_TRUE(BN_sub(y.get(), y.get(), BN_value_one()));
// Points not on the curve should be rejected.
bssl::UniquePtr<EC_POINT> invalid_point(EC_POINT_new(group));
ASSERT_TRUE(invalid_point);
EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group, invalid_point.get(),
x.get(), y.get(), nullptr));
}
TEST_P(ECCurveTest, CheckFIPS) {
// Generate an EC_KEY.
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid));
ASSERT_TRUE(key);
ASSERT_TRUE(EC_KEY_generate_key(key.get()));
EXPECT_TRUE(EC_KEY_check_fips(key.get()));
}
TEST_P(ECCurveTest, AddingEqualPoints) {
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid));
ASSERT_TRUE(key);
ASSERT_TRUE(EC_KEY_generate_key(key.get()));
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
bssl::UniquePtr<EC_POINT> p1(EC_POINT_new(group));
ASSERT_TRUE(p1);
ASSERT_TRUE(EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get())));
bssl::UniquePtr<EC_POINT> p2(EC_POINT_new(group));
ASSERT_TRUE(p2);
ASSERT_TRUE(EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get())));
bssl::UniquePtr<EC_POINT> double_p1(EC_POINT_new(group));
ASSERT_TRUE(double_p1);
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(EC_POINT_dbl(group, double_p1.get(), p1.get(), ctx.get()));
bssl::UniquePtr<EC_POINT> p1_plus_p2(EC_POINT_new(group));
ASSERT_TRUE(p1_plus_p2);
ASSERT_TRUE(
EC_POINT_add(group, p1_plus_p2.get(), p1.get(), p2.get(), ctx.get()));
EXPECT_EQ(0,
EC_POINT_cmp(group, double_p1.get(), p1_plus_p2.get(), ctx.get()))
<< "A+A != 2A";
}
TEST_P(ECCurveTest, MulZero) {
bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(GetParam().nid));
ASSERT_TRUE(group);
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group.get()));
ASSERT_TRUE(point);
bssl::UniquePtr<BIGNUM> zero(BN_new());
ASSERT_TRUE(zero);
BN_zero(zero.get());
ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), zero.get(), nullptr,
nullptr, nullptr));
EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get()))
<< "g * 0 did not return point at infinity.";
// Test that zero times an arbitrary point is also infinity. The generator is
// used as the arbitrary point.
bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group.get()));
ASSERT_TRUE(generator);
ASSERT_TRUE(EC_POINT_mul(group.get(), generator.get(), BN_value_one(),
nullptr, nullptr, nullptr));
ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), nullptr, generator.get(),
zero.get(), nullptr));
EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get()))
<< "p * 0 did not return point at infinity.";
}
static std::vector<EC_builtin_curve> AllCurves() {
const size_t num_curves = EC_get_builtin_curves(nullptr, 0);
std::vector<EC_builtin_curve> curves(num_curves);
EC_get_builtin_curves(curves.data(), num_curves);
return curves;
}
static std::string CurveToString(
const testing::TestParamInfo<EC_builtin_curve> &params) {
// The comment field contains characters GTest rejects, so use the OBJ name.
return OBJ_nid2sn(params.param.nid);
}
INSTANTIATE_TEST_CASE_P(, ECCurveTest, testing::ValuesIn(AllCurves()),
CurveToString);