boringssl/crypto/evp/evp_asn1.c

309 lines
9.2 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/evp.h>
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
#include <openssl/bytestring.h>
#include <openssl/dsa.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#include "internal.h"
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
EVP_PKEY *EVP_parse_public_key(CBS *cbs) {
/* Parse the SubjectPublicKeyInfo. */
CBS spki, algorithm, oid, key;
uint8_t padding;
if (!CBS_get_asn1(cbs, &spki, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) ||
CBS_len(&spki) != 0 ||
/* Every key type defined encodes the key as a byte string with the same
* conversion to BIT STRING. */
!CBS_get_u8(&key, &padding) ||
padding != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
/* Set up an |EVP_PKEY| of the appropriate type. */
EVP_PKEY *ret = EVP_PKEY_new();
if (ret == NULL ||
!EVP_PKEY_set_type(ret, OBJ_cbs2nid(&oid))) {
goto err;
}
/* Call into the type-specific SPKI decoding function. */
if (ret->ameth->pub_decode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
goto err;
}
if (!ret->ameth->pub_decode(ret, &algorithm, &key)) {
goto err;
}
return ret;
err:
EVP_PKEY_free(ret);
return NULL;
}
int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth->pub_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->pub_encode(cbb, key);
}
EVP_PKEY *EVP_parse_private_key(CBS *cbs) {
/* Parse the PrivateKeyInfo. */
CBS pkcs8, algorithm, oid, key;
uint64_t version;
if (!CBS_get_asn1(cbs, &pkcs8, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_uint64(&pkcs8, &version) ||
version != 0 ||
!CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
/* A PrivateKeyInfo ends with a SET of Attributes which we ignore. */
/* Set up an |EVP_PKEY| of the appropriate type. */
EVP_PKEY *ret = EVP_PKEY_new();
if (ret == NULL ||
!EVP_PKEY_set_type(ret, OBJ_cbs2nid(&oid))) {
goto err;
}
/* Call into the type-specific PrivateKeyInfo decoding function. */
if (ret->ameth->priv_decode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
goto err;
}
if (!ret->ameth->priv_decode(ret, &algorithm, &key)) {
goto err;
}
return ret;
err:
EVP_PKEY_free(ret);
return NULL;
}
int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth->priv_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->priv_encode(cbb, key);
}
static EVP_PKEY *old_priv_decode(CBS *cbs, int type) {
EVP_PKEY *ret = EVP_PKEY_new();
if (ret == NULL) {
return NULL;
}
switch (type) {
case EVP_PKEY_EC: {
EC_KEY *ec_key = EC_KEY_parse_private_key(cbs, NULL);
if (ec_key == NULL || !EVP_PKEY_assign_EC_KEY(ret, ec_key)) {
EC_KEY_free(ec_key);
goto err;
}
return ret;
}
case EVP_PKEY_DSA: {
DSA *dsa = DSA_parse_private_key(cbs);
if (dsa == NULL || !EVP_PKEY_assign_DSA(ret, dsa)) {
DSA_free(dsa);
goto err;
}
return ret;
}
case EVP_PKEY_RSA: {
RSA *rsa = RSA_parse_private_key(cbs);
if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) {
RSA_free(rsa);
goto err;
}
return ret;
}
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE);
goto err;
}
err:
EVP_PKEY_free(ret);
return NULL;
}
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len) {
if (len < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
/* Parse with the legacy format. */
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
EVP_PKEY *ret = old_priv_decode(&cbs, type);
if (ret == NULL) {
/* Try again with PKCS#8. */
ERR_clear_error();
CBS_init(&cbs, *inp, (size_t)len);
ret = EVP_parse_private_key(&cbs);
if (ret == NULL) {
return NULL;
}
if (ret->type != type) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES);
EVP_PKEY_free(ret);
return NULL;
}
}
if (out != NULL) {
EVP_PKEY_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
/* num_elements parses one SEQUENCE from |in| and returns the number of elements
* in it. On parse error, it returns zero. */
static size_t num_elements(const uint8_t *in, size_t in_len) {
CBS cbs, sequence;
CBS_init(&cbs, in, (size_t)in_len);
if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) {
return 0;
}
size_t count = 0;
while (CBS_len(&sequence) > 0) {
if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) {
return 0;
}
count++;
}
return count;
}
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) {
if (len < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
/* Parse the input as a PKCS#8 PrivateKeyInfo. */
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
EVP_PKEY *ret = EVP_parse_private_key(&cbs);
if (ret != NULL) {
if (out != NULL) {
EVP_PKEY_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
ERR_clear_error();
/* Count the elements to determine the legacy key format. */
switch (num_elements(*inp, (size_t)len)) {
case 4:
return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len);
case 6:
return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len);
default:
return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len);
}
}
int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp) {
switch (key->type) {
case EVP_PKEY_RSA:
return i2d_RSAPublicKey(key->pkey.rsa, outp);
case EVP_PKEY_DSA:
return i2d_DSAPublicKey(key->pkey.dsa, outp);
case EVP_PKEY_EC:
return i2o_ECPublicKey(key->pkey.ec, outp);
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return -1;
}
}