201 lines
6.1 KiB
C
201 lines
6.1 KiB
C
|
/* Copyright (c) 2017, Google Inc.
|
||
|
*
|
||
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||
|
|
||
|
#include <openssl/rand.h>
|
||
|
|
||
|
#include <openssl/type_check.h>
|
||
|
#include <openssl/mem.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
#include "../cipher/internal.h"
|
||
|
|
||
|
|
||
|
/* Section references in this file refer to SP 800-90Ar1:
|
||
|
* http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf */
|
||
|
|
||
|
/* See table 3. */
|
||
|
static const uint64_t kMaxReseedCount = UINT64_C(1) << 48;
|
||
|
|
||
|
int CTR_DRBG_init(CTR_DRBG_STATE *drbg,
|
||
|
const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
|
||
|
const uint8_t *personalization, size_t personalization_len) {
|
||
|
/* Section 10.2.1.3.1 */
|
||
|
if (personalization_len > CTR_DRBG_ENTROPY_LEN) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t seed_material[CTR_DRBG_ENTROPY_LEN];
|
||
|
OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN);
|
||
|
|
||
|
for (size_t i = 0; i < personalization_len; i++) {
|
||
|
seed_material[i] ^= personalization[i];
|
||
|
}
|
||
|
|
||
|
/* Section 10.2.1.2 */
|
||
|
|
||
|
/* kInitMask is the result of encrypting blocks with big-endian value 1, 2
|
||
|
* and 3 with the all-zero AES-256 key. */
|
||
|
static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = {
|
||
|
0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1,
|
||
|
0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
|
||
|
0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca,
|
||
|
0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e,
|
||
|
};
|
||
|
|
||
|
for (size_t i = 0; i < sizeof(kInitMask); i++) {
|
||
|
seed_material[i] ^= kInitMask[i];
|
||
|
}
|
||
|
|
||
|
drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32);
|
||
|
OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16);
|
||
|
drbg->reseed_counter = 1;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
OPENSSL_COMPILE_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0,
|
||
|
not_a_multiple_of_block_size);
|
||
|
|
||
|
/* ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a
|
||
|
* big-endian number. */
|
||
|
static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) {
|
||
|
drbg->counter.words[3] =
|
||
|
CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n);
|
||
|
}
|
||
|
|
||
|
static int CTR_DRBG_update(CTR_DRBG_STATE *drbg, const uint8_t *data,
|
||
|
size_t data_len) {
|
||
|
/* Section 10.2.1.2. A value of |data_len| which less than
|
||
|
* |CTR_DRBG_ENTROPY_LEN| is permitted and acts the same as right-padding
|
||
|
* with zeros. This can save a copy. */
|
||
|
if (data_len > CTR_DRBG_ENTROPY_LEN) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t temp[CTR_DRBG_ENTROPY_LEN];
|
||
|
for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) {
|
||
|
ctr32_add(drbg, 1);
|
||
|
drbg->block(drbg->counter.bytes, temp + i, &drbg->ks);
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < data_len; i++) {
|
||
|
temp[i] ^= data[i];
|
||
|
}
|
||
|
|
||
|
drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32);
|
||
|
OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg,
|
||
|
const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
|
||
|
const uint8_t *additional_data,
|
||
|
size_t additional_data_len) {
|
||
|
/* Section 10.2.1.4 */
|
||
|
uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN];
|
||
|
|
||
|
if (additional_data_len > 0) {
|
||
|
if (additional_data_len > CTR_DRBG_ENTROPY_LEN) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN);
|
||
|
for (size_t i = 0; i < additional_data_len; i++) {
|
||
|
entropy_copy[i] ^= additional_data[i];
|
||
|
}
|
||
|
|
||
|
entropy = entropy_copy;
|
||
|
}
|
||
|
|
||
|
if (!CTR_DRBG_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
drbg->reseed_counter = 1;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len,
|
||
|
const uint8_t *additional_data,
|
||
|
size_t additional_data_len) {
|
||
|
/* See 9.3.1 */
|
||
|
if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* See 10.2.1.5.1 */
|
||
|
if (drbg->reseed_counter > kMaxReseedCount) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (additional_data_len != 0 &&
|
||
|
!CTR_DRBG_update(drbg, additional_data, additional_data_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* kChunkSize is used to interact better with the cache. Since the AES-CTR
|
||
|
* code assumes that it's encrypting rather than just writing keystream, the
|
||
|
* buffer has to be zeroed first. Without chunking, large reads would zero
|
||
|
* the whole buffer, flushing the L1 cache, and then do another pass (missing
|
||
|
* the cache every time) to “encrypt” it. The code can avoid this by
|
||
|
* chunking. */
|
||
|
static const size_t kChunkSize = 8 * 1024;
|
||
|
|
||
|
while (out_len >= AES_BLOCK_SIZE) {
|
||
|
size_t todo = kChunkSize;
|
||
|
if (todo > out_len) {
|
||
|
todo = out_len;
|
||
|
}
|
||
|
|
||
|
todo &= ~(AES_BLOCK_SIZE-1);
|
||
|
const size_t num_blocks = todo / AES_BLOCK_SIZE;
|
||
|
|
||
|
if (drbg->ctr) {
|
||
|
OPENSSL_memset(out, 0, todo);
|
||
|
ctr32_add(drbg, 1);
|
||
|
drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes);
|
||
|
ctr32_add(drbg, num_blocks - 1);
|
||
|
} else {
|
||
|
for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) {
|
||
|
ctr32_add(drbg, 1);
|
||
|
drbg->block(drbg->counter.bytes, out + i, &drbg->ks);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out += todo;
|
||
|
out_len -= todo;
|
||
|
}
|
||
|
|
||
|
if (out_len > 0) {
|
||
|
uint8_t block[AES_BLOCK_SIZE];
|
||
|
ctr32_add(drbg, 1);
|
||
|
drbg->block(drbg->counter.bytes, block, &drbg->ks);
|
||
|
|
||
|
OPENSSL_memcpy(out, block, out_len);
|
||
|
}
|
||
|
|
||
|
if (!CTR_DRBG_update(drbg, additional_data, additional_data_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
drbg->reseed_counter++;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) {
|
||
|
OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE));
|
||
|
}
|