Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

cmac_test.cc 4.9 KiB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. /* Copyright (c) 2015, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #include <stdio.h>
  15. #include <algorithm>
  16. #include <openssl/cipher.h>
  17. #include <openssl/cmac.h>
  18. #include <openssl/mem.h>
  19. #include "../test/test_util.h"
  20. static void dump(const uint8_t *got, const uint8_t *want, size_t len) {
  21. hexdump(stderr, "got :", got, len);
  22. hexdump(stderr, "want:", want, len);
  23. fflush(stderr);
  24. }
  25. static int test(const char *name, const uint8_t *key, size_t key_len,
  26. const uint8_t *msg, size_t msg_len, const uint8_t *expected) {
  27. uint8_t out[16];
  28. if (!AES_CMAC(out, key, key_len, msg, msg_len)) {
  29. fprintf(stderr, "%s: AES_CMAC failed\n", name);
  30. return 0;
  31. }
  32. if (CRYPTO_memcmp(out, expected, sizeof(out)) != 0) {
  33. fprintf(stderr, "%s: CMAC result differs:\n", name);
  34. dump(out, expected, sizeof(out));
  35. return 0;
  36. }
  37. bssl::UniquePtr<CMAC_CTX> ctx(CMAC_CTX_new());
  38. if (!ctx || !CMAC_Init(ctx.get(), key, key_len, EVP_aes_128_cbc(), NULL)) {
  39. fprintf(stderr, "%s: CMAC_Init failed.\n", name);
  40. return 0;
  41. }
  42. for (unsigned chunk_size = 1; chunk_size <= msg_len; chunk_size++) {
  43. if (!CMAC_Reset(ctx.get())) {
  44. fprintf(stderr, "%s/%u: CMAC_Reset failed.\n", name, chunk_size);
  45. return 0;
  46. }
  47. size_t done = 0;
  48. while (done < msg_len) {
  49. size_t todo = std::min(msg_len - done, static_cast<size_t>(chunk_size));
  50. if (!CMAC_Update(ctx.get(), msg + done, todo)) {
  51. fprintf(stderr, "%s/%u: CMAC_Update failed.\n", name, chunk_size);
  52. return 0;
  53. }
  54. done += todo;
  55. }
  56. size_t out_len;
  57. if (!CMAC_Final(ctx.get(), out, &out_len)) {
  58. fprintf(stderr, "%s/%u: CMAC_Final failed.\n", name, chunk_size);
  59. return 0;
  60. }
  61. if (out_len != sizeof(out)) {
  62. fprintf(stderr, "%s/%u: incorrect out_len: %u.\n", name, chunk_size,
  63. static_cast<unsigned>(out_len));
  64. return 0;
  65. }
  66. if (CRYPTO_memcmp(out, expected, sizeof(out)) != 0) {
  67. fprintf(stderr, "%s/%u: CMAC result differs:\n", name, chunk_size);
  68. dump(out, expected, sizeof(out));
  69. return 0;
  70. }
  71. }
  72. return 1;
  73. }
  74. static int rfc_4493_test_vectors(void) {
  75. static const uint8_t kKey[16] = {
  76. 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
  77. 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
  78. };
  79. static const uint8_t kOut1[16] = {
  80. 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,
  81. 0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46,
  82. };
  83. static const uint8_t kMsg2[] = {
  84. 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
  85. 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
  86. };
  87. static const uint8_t kOut2[16] = {
  88. 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44,
  89. 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c,
  90. };
  91. static const uint8_t kMsg3[] = {
  92. 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
  93. 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
  94. 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
  95. 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
  96. 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
  97. };
  98. static const uint8_t kOut3[16] = {
  99. 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30,
  100. 0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27,
  101. };
  102. static const uint8_t kMsg4[] = {
  103. 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
  104. 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
  105. 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
  106. 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
  107. 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
  108. 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
  109. 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
  110. 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
  111. };
  112. static const uint8_t kOut4[16] = {
  113. 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92,
  114. 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe,
  115. };
  116. if (!test("RFC 4493 #1", kKey, sizeof(kKey), NULL, 0, kOut1) ||
  117. !test("RFC 4493 #2", kKey, sizeof(kKey), kMsg2, sizeof(kMsg2), kOut2) ||
  118. !test("RFC 4493 #3", kKey, sizeof(kKey), kMsg3, sizeof(kMsg3), kOut3) ||
  119. !test("RFC 4493 #4", kKey, sizeof(kKey), kMsg4, sizeof(kMsg4), kOut4)) {
  120. return 0;
  121. }
  122. return 1;
  123. }
  124. int main(int argc, char **argv) {
  125. if (!rfc_4493_test_vectors()) {
  126. return 1;
  127. }
  128. printf("PASS\n");
  129. return 0;
  130. }