boringssl/crypto/internal.h

642 lines
24 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
#include <openssl/ex_data.h>
#include <openssl/stack.h>
#include <openssl/thread.h>
#include <string.h>
#if defined(_MSC_VER)
#if !defined(__cplusplus) || _MSC_VER < 1900
#define alignas(x) __declspec(align(x))
#define alignof __alignof
#endif
#else
#include <stdalign.h>
#endif
#if !defined(OPENSSL_NO_THREADS) && \
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
#include <pthread.h>
#define OPENSSL_PTHREADS
#endif
#if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_THREADS
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
Add PPC64LE assembly for AES-GCM. This change adds AES and GHASH assembly from upstream, with the aim of speeding up AES-GCM. The PPC64LE assembly matches the interface of the ARMv8 assembly so I've changed the prefix of both sets of asm functions to be the same ("aes_hw_"). Otherwise, the new assmebly files and Perlasm match exactly those from upstream's c536b6be1a (from their master branch). Before: Did 1879000 AES-128-GCM (16 bytes) seal operations in 1000428us (1878196.1 ops/sec): 30.1 MB/s Did 61000 AES-128-GCM (1350 bytes) seal operations in 1006660us (60596.4 ops/sec): 81.8 MB/s Did 11000 AES-128-GCM (8192 bytes) seal operations in 1072649us (10255.0 ops/sec): 84.0 MB/s Did 1665000 AES-256-GCM (16 bytes) seal operations in 1000591us (1664016.6 ops/sec): 26.6 MB/s Did 52000 AES-256-GCM (1350 bytes) seal operations in 1006971us (51640.0 ops/sec): 69.7 MB/s Did 8840 AES-256-GCM (8192 bytes) seal operations in 1013294us (8724.0 ops/sec): 71.5 MB/s After: Did 4994000 AES-128-GCM (16 bytes) seal operations in 1000017us (4993915.1 ops/sec): 79.9 MB/s Did 1389000 AES-128-GCM (1350 bytes) seal operations in 1000073us (1388898.6 ops/sec): 1875.0 MB/s Did 319000 AES-128-GCM (8192 bytes) seal operations in 1000101us (318967.8 ops/sec): 2613.0 MB/s Did 4668000 AES-256-GCM (16 bytes) seal operations in 1000149us (4667304.6 ops/sec): 74.7 MB/s Did 1202000 AES-256-GCM (1350 bytes) seal operations in 1000646us (1201224.0 ops/sec): 1621.7 MB/s Did 269000 AES-256-GCM (8192 bytes) seal operations in 1002804us (268247.8 ops/sec): 2197.5 MB/s Change-Id: Id848562bd4e1aa79a4683012501dfa5e6c08cfcc Reviewed-on: https://boringssl-review.googlesource.com/11262 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-09-23 20:47:24 +01:00
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
/* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
void OPENSSL_cpuid_setup(void);
#endif
#if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;
#endif
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
/* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
static inline int buffers_alias(const uint8_t *a, size_t a_len,
const uint8_t *b, size_t b_len) {
/* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
* objects are undefined whereas pointer to integer conversions are merely
* implementation-defined. We assume the implementation defined it in a sane
* way. */
uintptr_t a_u = (uintptr_t)a;
uintptr_t b_u = (uintptr_t)b;
return a_u + a_len > b_u && b_u + b_len > a_u;
}
/* Constant-time utility functions.
*
* The following methods return a bitmask of all ones (0xff...f) for true and 0
* for false. This is useful for choosing a value based on the result of a
* conditional in constant time. For example,
*
* if (a < b) {
* c = a;
* } else {
* c = b;
* }
*
* can be written as
*
* crypto_word_t lt = constant_time_lt_w(a, b);
* c = constant_time_select_w(lt, a, b); */
/* crypto_word_t is the type that most constant-time functions use. Ideally we
* would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
* pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
* bits. Since we want to be able to do constant-time operations on a
* |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
* word length. */
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
typedef uint32_t crypto_word_t;
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)
/* constant_time_msb_w returns the given value with the MSB copied to all the
* other bits. */
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
return 0u - (a >> (sizeof(a) * 8 - 1));
}
/* constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. */
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
crypto_word_t b) {
/* Consider the two cases of the problem:
* msb(a) == msb(b): a < b iff the MSB of a - b is set.
* msb(a) != msb(b): a < b iff the MSB of b is set.
*
* If msb(a) == msb(b) then the following evaluates as:
* msb(a^((a^b)|((a-b)^a))) ==
* msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
* msb(a^a^(a-b)) == (rearranging)
* msb(a-b) (because x. x^x == 0)
*
* Else, if msb(a) != msb(b) then the following evaluates as:
* msb(a^((a^b)|((a-b)^a))) ==
* msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
* represents a value s.t. msb(𝟙) = 1)
* msb(a^𝟙) == (because ORing with 1 results in 1)
* msb(b)
*
*
* Here is an SMT-LIB verification of this formula:
*
* (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
* (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
* )
*
* (declare-fun a () (_ BitVec 32))
* (declare-fun b () (_ BitVec 32))
*
* (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
* (check-sat)
* (get-model)
*/
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}
/* constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
* mask. */
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_lt_w(a, b));
}
/* constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. */
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
crypto_word_t b) {
return ~constant_time_lt_w(a, b);
}
/* constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
* mask. */
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_ge_w(a, b));
}
/* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
/* Here is an SMT-LIB verification of this formula:
*
* (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
* (bvand (bvnot a) (bvsub a #x00000001))
* )
*
* (declare-fun a () (_ BitVec 32))
*
* (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
* (check-sat)
* (get-model)
*/
return constant_time_msb_w(~a & (a - 1));
}
/* constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
* 8-bit mask. */
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
return (uint8_t)(constant_time_is_zero_w(a));
}
/* constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. */
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
crypto_word_t b) {
return constant_time_is_zero_w(a ^ b);
}
/* constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
* mask. */
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_eq_w(a, b));
}
/* constant_time_eq_int acts like |constant_time_eq_w| but works on int
* values. */
static inline crypto_word_t constant_time_eq_int(int a, int b) {
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}
/* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
* mask. */
static inline uint8_t constant_time_eq_int_8(int a, int b) {
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}
/* constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
* 1s or all 0s (as returned by the methods above), the select methods return
* either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
crypto_word_t a,
crypto_word_t b) {
return (mask & a) | (~mask & b);
}
/* constant_time_select_8 acts like |constant_time_select| but operates on
* 8-bit values. */
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
uint8_t b) {
return (uint8_t)(constant_time_select_w(mask, a, b));
}
/* constant_time_select_int acts like |constant_time_select| but operates on
* ints. */
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
(crypto_word_t)(b)));
}
/* Thread-safe initialisation. */
#if defined(OPENSSL_NO_THREADS)
typedef uint32_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT 0
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef INIT_ONCE CRYPTO_once_t;
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_once_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
#else
#error "Unknown threading library"
#endif
/* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
* concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
* then they will block until |init| completes, but |init| will have only been
* called once.
*
* The |once| argument must be a |CRYPTO_once_t| that has been initialised with
* the value |CRYPTO_ONCE_INIT|. */
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
/* Reference counting. */
/* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
#define CRYPTO_REFCOUNT_MAX 0xffffffff
/* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
* value would overflow. It's safe for multiple threads to concurrently call
* this or |CRYPTO_refcount_dec_and_test_zero| on the same
* |CRYPTO_refcount_t|. */
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
/* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
* if it's zero, it crashes the address space.
* if it's the maximum value, it returns zero.
* otherwise, it atomically decrements it and returns one iff the resulting
* value is zero.
*
* It's safe for multiple threads to concurrently call this or
* |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
/* Locks.
*
* Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
* structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
* a global lock. A global lock must be initialised to the value
* |CRYPTO_STATIC_MUTEX_INIT|.
*
* |CRYPTO_MUTEX| can appear in public structures and so is defined in
* thread.h as a structure large enough to fit the real type. The global lock is
* a different type so it may be initialized with platform initializer macros.*/
#if defined(OPENSSL_NO_THREADS)
struct CRYPTO_STATIC_MUTEX {
char padding; /* Empty structs have different sizes in C and C++. */
};
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
struct CRYPTO_STATIC_MUTEX {
SRWLOCK lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
#elif defined(OPENSSL_PTHREADS)
struct CRYPTO_STATIC_MUTEX {
pthread_rwlock_t lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
#else
#error "Unknown threading library"
#endif
/* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
* |CRYPTO_STATIC_MUTEX|. */
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
/* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
* read lock, but none may have a write lock. */
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
/* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
* of lock on it. */
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
/* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
/* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
/* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
/* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
* have a read lock, but none may have a write lock. The |lock| variable does
* not need to be initialised by any function, but must have been statically
* initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
struct CRYPTO_STATIC_MUTEX *lock);
/* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
* any type of lock on it. The |lock| variable does not need to be initialised
* by any function, but must have been statically initialised with
* |CRYPTO_STATIC_MUTEX_INIT|. */
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
struct CRYPTO_STATIC_MUTEX *lock);
/* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
struct CRYPTO_STATIC_MUTEX *lock);
/* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
struct CRYPTO_STATIC_MUTEX *lock);
/* Thread local storage. */
/* thread_local_data_t enumerates the types of thread-local data that can be
* stored. */
typedef enum {
OPENSSL_THREAD_LOCAL_ERR = 0,
OPENSSL_THREAD_LOCAL_RAND,
OPENSSL_THREAD_LOCAL_TEST,
NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;
/* thread_local_destructor_t is the type of a destructor function that will be
* called when a thread exits and its thread-local storage needs to be freed. */
typedef void (*thread_local_destructor_t)(void *);
/* CRYPTO_get_thread_local gets the pointer value that is stored for the
* current thread for the given index, or NULL if none has been set. */
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
/* CRYPTO_set_thread_local sets a pointer value for the current thread at the
* given index. This function should only be called once per thread for a given
* |index|: rather than update the pointer value itself, update the data that
* is pointed to.
*
* The destructor function will be called when a thread exits to free this
* thread-local data. All calls to |CRYPTO_set_thread_local| with the same
* |index| should have the same |destructor| argument. The destructor may be
* called with a NULL argument if a thread that never set a thread-local
* pointer for |index|, exits. The destructor may be called concurrently with
* different arguments.
*
* This function returns one on success or zero on error. If it returns zero
* then |destructor| has been called with |value| already. */
OPENSSL_EXPORT int CRYPTO_set_thread_local(
thread_local_data_t index, void *value,
thread_local_destructor_t destructor);
/* ex_data */
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
/* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
* supports ex_data. It should defined as a static global within the module
* which defines that type. */
typedef struct {
struct CRYPTO_STATIC_MUTEX lock;
STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
/* num_reserved is one if the ex_data index zero is reserved for legacy
* |TYPE_get_app_data| functions. */
uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
{CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
/* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
* it to |*out_index|. Each class of object should provide a wrapper function
* that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
* zero otherwise. */
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
int *out_index, long argl,
void *argp,
CRYPTO_EX_free *free_func);
/* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
* of object should provide a wrapper function. */
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
/* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
* if no such index exists. Each class of object should provide a wrapper
* function. */
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
/* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
/* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
* object of the given class. */
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
void *obj, CRYPTO_EX_DATA *ad);
/* Language bug workarounds.
*
* Most C standard library functions are undefined if passed NULL, even when the
* corresponding length is zero. This gives them (and, in turn, all functions
* which call them) surprising behavior on empty arrays. Some compilers will
* miscompile code due to this rule. See also
* https://www.imperialviolet.org/2016/06/26/nonnull.html
*
* These wrapper functions behave the same as the corresponding C standard
* functions, but behave as expected when passed NULL if the length is zero.
*
* Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
/* C++ defines |memchr| as a const-correct overload. */
#if defined(__cplusplus)
extern "C++" {
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
} /* extern "C++" */
#else /* __cplusplus */
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
#endif /* __cplusplus */
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
if (n == 0) {
return 0;
}
return memcmp(s1, s2, n);
}
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memcpy(dst, src, n);
}
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memmove(dst, src, n);
}
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
if (n == 0) {
return dst;
}
return memset(dst, c, n);
}
#if defined(BORINGSSL_FIPS)
/* BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
* fails. It prevents any further cryptographic operations by the current
* process. */
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
#endif
#if defined(__cplusplus)
} /* extern C */
#endif
#endif /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */