2014-06-20 20:00:00 +01:00
|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.]
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright 2005 Nokia. All rights reserved.
|
|
|
|
*
|
|
|
|
* The portions of the attached software ("Contribution") is developed by
|
|
|
|
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
|
|
|
|
* license.
|
|
|
|
*
|
|
|
|
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
|
|
|
|
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
|
|
|
|
* support (see RFC 4279) to OpenSSL.
|
|
|
|
*
|
|
|
|
* No patent licenses or other rights except those expressly stated in
|
|
|
|
* the OpenSSL open source license shall be deemed granted or received
|
|
|
|
* expressly, by implication, estoppel, or otherwise.
|
|
|
|
*
|
|
|
|
* No assurances are provided by Nokia that the Contribution does not
|
|
|
|
* infringe the patent or other intellectual property rights of any third
|
|
|
|
* party or that the license provides you with all the necessary rights
|
|
|
|
* to make use of the Contribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
|
|
|
|
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
|
|
|
|
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
|
|
|
|
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
|
|
|
|
* OTHERWISE. */
|
|
|
|
|
2015-09-15 06:48:04 +01:00
|
|
|
#include <openssl/ssl.h>
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
#include <assert.h>
|
2015-04-08 04:05:04 +01:00
|
|
|
#include <string.h>
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2017-07-19 03:45:18 +01:00
|
|
|
#include <utility>
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <openssl/hmac.h>
|
|
|
|
#include <openssl/md5.h>
|
|
|
|
#include <openssl/mem.h>
|
2016-03-25 22:07:11 +00:00
|
|
|
#include <openssl/nid.h>
|
2014-06-20 20:00:00 +01:00
|
|
|
#include <openssl/rand.h>
|
|
|
|
|
2016-12-13 06:07:13 +00:00
|
|
|
#include "../crypto/internal.h"
|
2015-04-08 03:38:30 +01:00
|
|
|
#include "internal.h"
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2014-12-19 01:42:32 +00:00
|
|
|
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
namespace bssl {
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
|
|
|
|
// section 5. It XORs |out_len| bytes to |out|, using |md| as the hash and
|
|
|
|
// |secret| as the secret. |seed1| through |seed3| are concatenated to form the
|
|
|
|
// seed parameter. It returns one on success and zero on failure.
|
2014-12-23 14:23:32 +00:00
|
|
|
static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md,
|
|
|
|
const uint8_t *secret, size_t secret_len,
|
|
|
|
const uint8_t *seed1, size_t seed1_len,
|
|
|
|
const uint8_t *seed2, size_t seed2_len,
|
|
|
|
const uint8_t *seed3, size_t seed3_len) {
|
2017-07-20 04:57:40 +01:00
|
|
|
ScopedHMAC_CTX ctx, ctx_tmp, ctx_init;
|
2014-12-19 01:42:32 +00:00
|
|
|
uint8_t A1[EVP_MAX_MD_SIZE];
|
2014-12-23 14:23:32 +00:00
|
|
|
unsigned A1_len;
|
2014-12-19 01:42:32 +00:00
|
|
|
int ret = 0;
|
|
|
|
|
2015-12-07 02:04:36 +00:00
|
|
|
size_t chunk = EVP_MD_size(md);
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2017-07-20 04:57:40 +01:00
|
|
|
if (!HMAC_Init_ex(ctx_init.get(), secret, secret_len, md, NULL) ||
|
|
|
|
!HMAC_CTX_copy_ex(ctx.get(), ctx_init.get()) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed1, seed1_len) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed2, seed2_len) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed3, seed3_len) ||
|
|
|
|
!HMAC_Final(ctx.get(), A1, &A1_len)) {
|
2014-12-19 01:42:32 +00:00
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (;;) {
|
2015-12-07 02:04:36 +00:00
|
|
|
unsigned len;
|
|
|
|
uint8_t hmac[EVP_MAX_MD_SIZE];
|
2017-07-20 04:57:40 +01:00
|
|
|
if (!HMAC_CTX_copy_ex(ctx.get(), ctx_init.get()) ||
|
|
|
|
!HMAC_Update(ctx.get(), A1, A1_len) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// Save a copy of |ctx| to compute the next A1 value below.
|
2017-07-20 04:57:40 +01:00
|
|
|
(out_len > chunk && !HMAC_CTX_copy_ex(ctx_tmp.get(), ctx.get())) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed1, seed1_len) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed2, seed2_len) ||
|
|
|
|
!HMAC_Update(ctx.get(), seed3, seed3_len) ||
|
|
|
|
!HMAC_Final(ctx.get(), hmac, &len)) {
|
2015-08-06 14:54:13 +01:00
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
assert(len == chunk);
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// XOR the result into |out|.
|
2015-08-06 14:54:13 +01:00
|
|
|
if (len > out_len) {
|
|
|
|
len = out_len;
|
|
|
|
}
|
|
|
|
unsigned i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
out[i] ^= hmac[i];
|
|
|
|
}
|
|
|
|
out += len;
|
|
|
|
out_len -= len;
|
|
|
|
|
|
|
|
if (out_len == 0) {
|
2014-12-19 01:42:32 +00:00
|
|
|
break;
|
|
|
|
}
|
2015-08-06 14:54:13 +01:00
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Calculate the next A1 value.
|
2017-07-20 04:57:40 +01:00
|
|
|
if (!HMAC_Final(ctx_tmp.get(), A1, &A1_len)) {
|
2015-08-06 14:54:13 +01:00
|
|
|
goto err;
|
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
err:
|
2014-12-19 01:42:32 +00:00
|
|
|
OPENSSL_cleanse(A1, sizeof(A1));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-01-12 18:17:07 +00:00
|
|
|
int tls1_prf(const EVP_MD *digest, uint8_t *out, size_t out_len,
|
|
|
|
const uint8_t *secret, size_t secret_len, const char *label,
|
|
|
|
size_t label_len, const uint8_t *seed1, size_t seed1_len,
|
|
|
|
const uint8_t *seed2, size_t seed2_len) {
|
2014-12-23 14:23:32 +00:00
|
|
|
if (out_len == 0) {
|
2014-12-22 15:42:51 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2016-12-13 06:07:13 +00:00
|
|
|
OPENSSL_memset(out, 0, out_len);
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2017-01-12 18:17:07 +00:00
|
|
|
if (digest == EVP_md5_sha1()) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// If using the MD5/SHA1 PRF, |secret| is partitioned between SHA-1 and
|
|
|
|
// MD5, MD5 first.
|
2015-08-06 14:54:13 +01:00
|
|
|
size_t secret_half = secret_len - (secret_len / 2);
|
|
|
|
if (!tls1_P_hash(out, out_len, EVP_md5(), secret, secret_half,
|
|
|
|
(const uint8_t *)label, label_len, seed1, seed1_len, seed2,
|
|
|
|
seed2_len)) {
|
|
|
|
return 0;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
2015-08-06 14:54:13 +01:00
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Note that, if |secret_len| is odd, the two halves share a byte.
|
2015-08-06 14:54:13 +01:00
|
|
|
secret = secret + (secret_len - secret_half);
|
|
|
|
secret_len = secret_half;
|
2017-01-12 18:17:07 +00:00
|
|
|
|
|
|
|
digest = EVP_sha1();
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
2015-08-06 14:54:13 +01:00
|
|
|
|
2017-01-12 18:17:07 +00:00
|
|
|
if (!tls1_P_hash(out, out_len, digest, secret, secret_len,
|
|
|
|
(const uint8_t *)label, label_len, seed1, seed1_len, seed2,
|
|
|
|
seed2_len)) {
|
2015-08-06 14:54:13 +01:00
|
|
|
return 0;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2015-08-06 14:54:13 +01:00
|
|
|
return 1;
|
2014-06-20 20:00:00 +01:00
|
|
|
}
|
2014-06-25 01:29:06 +01:00
|
|
|
|
2017-01-12 18:17:07 +00:00
|
|
|
static int ssl3_prf(uint8_t *out, size_t out_len, const uint8_t *secret,
|
|
|
|
size_t secret_len, const char *label, size_t label_len,
|
|
|
|
const uint8_t *seed1, size_t seed1_len,
|
|
|
|
const uint8_t *seed2, size_t seed2_len) {
|
2017-07-20 04:57:40 +01:00
|
|
|
ScopedEVP_MD_CTX md5;
|
|
|
|
ScopedEVP_MD_CTX sha1;
|
2017-01-12 18:17:07 +00:00
|
|
|
uint8_t buf[16], smd[SHA_DIGEST_LENGTH];
|
|
|
|
uint8_t c = 'A';
|
|
|
|
size_t i, j, k;
|
|
|
|
|
|
|
|
k = 0;
|
|
|
|
for (i = 0; i < out_len; i += MD5_DIGEST_LENGTH) {
|
|
|
|
k++;
|
|
|
|
if (k > sizeof(buf)) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// bug: 'buf' is too small for this ciphersuite
|
2017-01-12 18:17:07 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < k; j++) {
|
|
|
|
buf[j] = c;
|
|
|
|
}
|
|
|
|
c++;
|
2017-07-20 04:57:40 +01:00
|
|
|
if (!EVP_DigestInit_ex(sha1.get(), EVP_sha1(), NULL)) {
|
2017-01-12 18:17:07 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_LIB_EVP);
|
|
|
|
return 0;
|
|
|
|
}
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestUpdate(sha1.get(), buf, k);
|
|
|
|
EVP_DigestUpdate(sha1.get(), secret, secret_len);
|
2017-08-29 21:33:21 +01:00
|
|
|
// |label| is ignored for SSLv3.
|
2017-01-12 18:17:07 +00:00
|
|
|
if (seed1_len) {
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestUpdate(sha1.get(), seed1, seed1_len);
|
2017-01-12 18:17:07 +00:00
|
|
|
}
|
|
|
|
if (seed2_len) {
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestUpdate(sha1.get(), seed2, seed2_len);
|
2017-01-12 18:17:07 +00:00
|
|
|
}
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestFinal_ex(sha1.get(), smd, NULL);
|
2017-01-12 18:17:07 +00:00
|
|
|
|
2017-07-20 04:57:40 +01:00
|
|
|
if (!EVP_DigestInit_ex(md5.get(), EVP_md5(), NULL)) {
|
2017-01-12 18:17:07 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_LIB_EVP);
|
|
|
|
return 0;
|
|
|
|
}
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestUpdate(md5.get(), secret, secret_len);
|
|
|
|
EVP_DigestUpdate(md5.get(), smd, SHA_DIGEST_LENGTH);
|
2017-01-12 18:17:07 +00:00
|
|
|
if (i + MD5_DIGEST_LENGTH > out_len) {
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestFinal_ex(md5.get(), smd, NULL);
|
2017-01-12 18:17:07 +00:00
|
|
|
OPENSSL_memcpy(out, smd, out_len - i);
|
|
|
|
} else {
|
2017-07-20 04:57:40 +01:00
|
|
|
EVP_DigestFinal_ex(md5.get(), out, NULL);
|
2017-01-12 18:17:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
out += MD5_DIGEST_LENGTH;
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_cleanse(smd, SHA_DIGEST_LENGTH);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2016-11-17 08:03:59 +00:00
|
|
|
static int tls1_setup_key_block(SSL_HANDSHAKE *hs) {
|
|
|
|
SSL *const ssl = hs->ssl;
|
2017-09-28 00:02:51 +01:00
|
|
|
if (!hs->key_block.empty()) {
|
2016-11-17 08:01:01 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
SSL_SESSION *session = ssl->session;
|
2017-07-20 19:49:15 +01:00
|
|
|
if (hs->new_session) {
|
|
|
|
session = hs->new_session.get();
|
2016-11-17 08:01:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_AEAD *aead = NULL;
|
|
|
|
size_t mac_secret_len, fixed_iv_len;
|
|
|
|
if (session->cipher == NULL ||
|
|
|
|
!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len,
|
2017-05-24 21:54:35 +01:00
|
|
|
session->cipher, ssl3_protocol_version(ssl),
|
|
|
|
SSL_is_dtls(ssl))) {
|
2016-11-17 08:01:01 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
size_t key_len = EVP_AEAD_key_length(aead);
|
|
|
|
if (mac_secret_len > 0) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
|
|
|
|
// key length reported by |EVP_AEAD_key_length| will include the MAC key
|
|
|
|
// bytes and initial implicit IV.
|
2016-11-17 08:01:01 +00:00
|
|
|
if (key_len < mac_secret_len + fixed_iv_len) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
key_len -= mac_secret_len + fixed_iv_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(mac_secret_len < 256);
|
|
|
|
assert(key_len < 256);
|
|
|
|
assert(fixed_iv_len < 256);
|
|
|
|
|
|
|
|
ssl->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len;
|
|
|
|
ssl->s3->tmp.new_key_len = (uint8_t)key_len;
|
|
|
|
ssl->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len;
|
|
|
|
|
2017-09-28 00:02:51 +01:00
|
|
|
Array<uint8_t> key_block;
|
|
|
|
if (!key_block.Init(SSL_get_key_block_len(ssl)) ||
|
|
|
|
!SSL_generate_key_block(ssl, key_block.data(), key_block.size())) {
|
2016-11-17 08:01:01 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-09-28 00:02:51 +01:00
|
|
|
hs->key_block = std::move(key_block);
|
2016-11-17 08:01:01 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2017-09-22 00:07:15 +01:00
|
|
|
int tls1_change_cipher_state(SSL_HANDSHAKE *hs,
|
|
|
|
evp_aead_direction_t direction) {
|
2016-11-17 08:03:59 +00:00
|
|
|
SSL *const ssl = hs->ssl;
|
2017-08-29 21:33:21 +01:00
|
|
|
// Ensure the key block is set up.
|
2016-11-17 08:03:59 +00:00
|
|
|
if (!tls1_setup_key_block(hs)) {
|
2015-12-25 20:48:39 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-12-25 20:34:23 +00:00
|
|
|
size_t mac_secret_len = ssl->s3->tmp.new_mac_secret_len;
|
|
|
|
size_t key_len = ssl->s3->tmp.new_key_len;
|
|
|
|
size_t iv_len = ssl->s3->tmp.new_fixed_iv_len;
|
2017-09-28 00:02:51 +01:00
|
|
|
assert((mac_secret_len + key_len + iv_len) * 2 == hs->key_block.size());
|
|
|
|
|
|
|
|
Span<const uint8_t> key_block = hs->key_block;
|
|
|
|
Span<const uint8_t> mac_secret, key, iv;
|
|
|
|
if (direction == (ssl->server ? evp_aead_open : evp_aead_seal)) {
|
|
|
|
// Use the client write (server read) keys.
|
|
|
|
mac_secret = key_block.subspan(0, mac_secret_len);
|
|
|
|
key = key_block.subspan(2 * mac_secret_len, key_len);
|
|
|
|
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len, iv_len);
|
2014-12-19 01:42:32 +00:00
|
|
|
} else {
|
2017-09-28 00:02:51 +01:00
|
|
|
// Use the server write (client read) keys.
|
|
|
|
mac_secret = key_block.subspan(mac_secret_len, mac_secret_len);
|
|
|
|
key = key_block.subspan(2 * mac_secret_len + key_len, key_len);
|
|
|
|
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len + iv_len, iv_len);
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-09-28 00:02:51 +01:00
|
|
|
UniquePtr<SSLAEADContext> aead_ctx =
|
|
|
|
SSLAEADContext::Create(direction, ssl->version, SSL_is_dtls(ssl),
|
|
|
|
hs->new_cipher, key, mac_secret, iv);
|
2017-07-19 03:45:18 +01:00
|
|
|
if (!aead_ctx) {
|
2014-12-19 01:42:32 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-09-22 00:07:15 +01:00
|
|
|
if (direction == evp_aead_open) {
|
2017-07-19 03:45:18 +01:00
|
|
|
return ssl->method->set_read_state(ssl, std::move(aead_ctx));
|
2015-03-03 19:20:26 +00:00
|
|
|
}
|
2016-07-15 04:10:43 +01:00
|
|
|
|
2017-07-19 03:45:18 +01:00
|
|
|
return ssl->method->set_write_state(ssl, std::move(aead_ctx));
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-01-12 18:17:07 +00:00
|
|
|
int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
|
2015-12-19 22:05:56 +00:00
|
|
|
const uint8_t *premaster,
|
2014-12-23 15:01:09 +00:00
|
|
|
size_t premaster_len) {
|
2017-01-12 18:17:07 +00:00
|
|
|
const SSL *ssl = hs->ssl;
|
2017-02-17 21:26:01 +00:00
|
|
|
if (hs->extended_master_secret) {
|
2015-12-30 00:13:58 +00:00
|
|
|
uint8_t digests[EVP_MAX_MD_SIZE];
|
2017-01-12 18:17:07 +00:00
|
|
|
size_t digests_len;
|
2017-07-19 21:38:21 +01:00
|
|
|
if (!hs->transcript.GetHash(digests, &digests_len) ||
|
|
|
|
!tls1_prf(hs->transcript.Digest(), out, SSL3_MASTER_SECRET_SIZE,
|
|
|
|
premaster, premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
|
2017-01-12 18:17:07 +00:00
|
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests,
|
|
|
|
digests_len, NULL, 0)) {
|
2014-12-22 15:42:51 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
} else {
|
2017-01-12 18:17:07 +00:00
|
|
|
if (ssl3_protocol_version(ssl) == SSL3_VERSION) {
|
|
|
|
if (!ssl3_prf(out, SSL3_MASTER_SECRET_SIZE, premaster, premaster_len,
|
|
|
|
TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
|
|
|
|
ssl->s3->client_random, SSL3_RANDOM_SIZE,
|
|
|
|
ssl->s3->server_random, SSL3_RANDOM_SIZE)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
} else {
|
2017-07-19 21:38:21 +01:00
|
|
|
if (!tls1_prf(hs->transcript.Digest(), out, SSL3_MASTER_SECRET_SIZE,
|
|
|
|
premaster, premaster_len, TLS_MD_MASTER_SECRET_CONST,
|
|
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE, ssl->s3->client_random,
|
|
|
|
SSL3_RANDOM_SIZE, ssl->s3->server_random,
|
|
|
|
SSL3_RANDOM_SIZE)) {
|
2017-01-12 18:17:07 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2014-12-22 15:42:51 +00:00
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return SSL3_MASTER_SECRET_SIZE;
|
|
|
|
}
|
|
|
|
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
} // namespace bssl
|
|
|
|
|
|
|
|
using namespace bssl;
|
|
|
|
|
|
|
|
size_t SSL_get_key_block_len(const SSL *ssl) {
|
|
|
|
return 2 * ((size_t)ssl->s3->tmp.new_mac_secret_len +
|
|
|
|
(size_t)ssl->s3->tmp.new_key_len +
|
|
|
|
(size_t)ssl->s3->tmp.new_fixed_iv_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_generate_key_block(const SSL *ssl, uint8_t *out, size_t out_len) {
|
2017-08-09 20:02:34 +01:00
|
|
|
const SSL_SESSION *session = SSL_get_session(ssl);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
if (ssl3_protocol_version(ssl) == SSL3_VERSION) {
|
2017-08-09 20:02:34 +01:00
|
|
|
return ssl3_prf(out, out_len, session->master_key,
|
|
|
|
session->master_key_length, TLS_MD_KEY_EXPANSION_CONST,
|
|
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE, ssl->s3->server_random,
|
|
|
|
SSL3_RANDOM_SIZE, ssl->s3->client_random, SSL3_RANDOM_SIZE);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
2017-08-09 20:02:34 +01:00
|
|
|
const EVP_MD *digest = SSL_SESSION_get_digest(session);
|
|
|
|
return tls1_prf(digest, out, out_len, session->master_key,
|
|
|
|
session->master_key_length, TLS_MD_KEY_EXPANSION_CONST,
|
|
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE, ssl->s3->server_random,
|
|
|
|
SSL3_RANDOM_SIZE, ssl->s3->client_random, SSL3_RANDOM_SIZE);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
2015-12-29 23:56:28 +00:00
|
|
|
int SSL_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
|
|
|
|
const char *label, size_t label_len,
|
|
|
|
const uint8_t *context, size_t context_len,
|
|
|
|
int use_context) {
|
2015-12-19 22:05:56 +00:00
|
|
|
if (!ssl->s3->have_version || ssl->version == SSL3_VERSION) {
|
2015-05-03 20:34:35 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Exporters may not be used in the middle of a renegotiation.
|
2016-11-01 23:45:06 +00:00
|
|
|
if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-07-11 18:19:03 +01:00
|
|
|
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
|
|
|
|
return tls13_export_keying_material(ssl, out, out_len, label, label_len,
|
|
|
|
context, context_len, use_context);
|
|
|
|
}
|
|
|
|
|
2015-04-03 16:02:24 +01:00
|
|
|
size_t seed_len = 2 * SSL3_RANDOM_SIZE;
|
2014-12-19 01:42:32 +00:00
|
|
|
if (use_context) {
|
2015-04-03 16:02:24 +01:00
|
|
|
if (context_len >= 1u << 16) {
|
2015-06-29 05:28:17 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
2015-04-03 16:02:24 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
seed_len += 2 + context_len;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
2017-07-12 22:35:14 +01:00
|
|
|
uint8_t *seed = (uint8_t *)OPENSSL_malloc(seed_len);
|
2015-04-03 16:02:24 +01:00
|
|
|
if (seed == NULL) {
|
2015-06-29 05:28:17 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
2015-04-03 16:02:24 +01:00
|
|
|
return 0;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2016-12-13 06:07:13 +00:00
|
|
|
OPENSSL_memcpy(seed, ssl->s3->client_random, SSL3_RANDOM_SIZE);
|
|
|
|
OPENSSL_memcpy(seed + SSL3_RANDOM_SIZE, ssl->s3->server_random,
|
|
|
|
SSL3_RANDOM_SIZE);
|
2014-12-19 01:42:32 +00:00
|
|
|
if (use_context) {
|
2015-04-03 16:02:24 +01:00
|
|
|
seed[2 * SSL3_RANDOM_SIZE] = (uint8_t)(context_len >> 8);
|
|
|
|
seed[2 * SSL3_RANDOM_SIZE + 1] = (uint8_t)context_len;
|
2016-12-13 06:07:13 +00:00
|
|
|
OPENSSL_memcpy(seed + 2 * SSL3_RANDOM_SIZE + 2, context, context_len);
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-08-09 20:02:34 +01:00
|
|
|
const SSL_SESSION *session = SSL_get_session(ssl);
|
|
|
|
const EVP_MD *digest = SSL_SESSION_get_digest(session);
|
|
|
|
int ret = tls1_prf(digest, out, out_len, session->master_key,
|
|
|
|
session->master_key_length, label, label_len, seed,
|
|
|
|
seed_len, NULL, 0);
|
2015-04-03 16:02:24 +01:00
|
|
|
OPENSSL_free(seed);
|
2014-12-19 01:42:32 +00:00
|
|
|
return ret;
|
|
|
|
}
|