2014-06-20 20:00:00 +01:00
|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.] */
|
|
|
|
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
|
Verify RSA private key operation regardless of whether CRT is used.
Previously, the verification was only done when using the CRT method,
as the CRT method has been shown to be extremely sensitive to fault
attacks. However, there's no reason to avoid doing the verification
when the non-CRT method is used (performance-sensitive applications
should always be using the CRT-capable keys).
Previously, when we detected a fault (attack) through this verification,
libcrypto would fall back to the non-CRT method and assume that the
non-CRT method would give a correct result, despite having just
detecting corruption that is likely from an attack. Instead, just give
up, like NSS does.
Previously, the code tried to handle the case where the input was not
reduced mod rsa->n. This is (was) not possible, so avoid trying to
handle that. This simplifies the equality check and lets us use
|CRYPTO_memcmp|.
Change-Id: I78d1e55520a1c8c280cae2b7256e12ff6290507d
Reviewed-on: https://boringssl-review.googlesource.com/7582
Reviewed-by: David Benjamin <davidben@google.com>
2016-03-25 22:23:16 +00:00
|
|
|
#include <openssl/mem.h>
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
|
|
|
|
int BN_ucmp(const BIGNUM *a, const BIGNUM *b) {
|
|
|
|
int i;
|
|
|
|
BN_ULONG t1, t2, *ap, *bp;
|
|
|
|
|
|
|
|
i = a->top - b->top;
|
|
|
|
if (i != 0) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
ap = a->d;
|
|
|
|
bp = b->d;
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
|
|
t1 = ap[i];
|
|
|
|
t2 = bp[i];
|
|
|
|
if (t1 != t2) {
|
|
|
|
return (t1 > t2) ? 1 : -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BN_cmp(const BIGNUM *a, const BIGNUM *b) {
|
|
|
|
int i;
|
|
|
|
int gt, lt;
|
|
|
|
BN_ULONG t1, t2;
|
|
|
|
|
|
|
|
if ((a == NULL) || (b == NULL)) {
|
|
|
|
if (a != NULL) {
|
|
|
|
return -1;
|
|
|
|
} else if (b != NULL) {
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (a->neg != b->neg) {
|
|
|
|
if (a->neg) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (a->neg == 0) {
|
|
|
|
gt = 1;
|
|
|
|
lt = -1;
|
|
|
|
} else {
|
|
|
|
gt = -1;
|
|
|
|
lt = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (a->top > b->top) {
|
|
|
|
return gt;
|
|
|
|
}
|
|
|
|
if (a->top < b->top) {
|
|
|
|
return lt;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
|
|
t1 = a->d[i];
|
|
|
|
t2 = b->d[i];
|
|
|
|
if (t1 > t2) {
|
|
|
|
return gt;
|
|
|
|
} if (t1 < t2) {
|
|
|
|
return lt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) {
|
|
|
|
int i;
|
|
|
|
BN_ULONG aa, bb;
|
|
|
|
|
|
|
|
aa = a[n - 1];
|
|
|
|
bb = b[n - 1];
|
|
|
|
if (aa != bb) {
|
|
|
|
return (aa > bb) ? 1 : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = n - 2; i >= 0; i--) {
|
|
|
|
aa = a[i];
|
|
|
|
bb = b[i];
|
|
|
|
if (aa != bb) {
|
|
|
|
return (aa > bb) ? 1 : -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) {
|
|
|
|
int n, i;
|
|
|
|
n = cl - 1;
|
|
|
|
|
|
|
|
if (dl < 0) {
|
|
|
|
for (i = dl; i < 0; i++) {
|
|
|
|
if (b[n - i] != 0) {
|
2017-08-18 19:06:02 +01:00
|
|
|
return -1; // a < b
|
2014-06-20 20:00:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (dl > 0) {
|
|
|
|
for (i = dl; i > 0; i--) {
|
|
|
|
if (a[n + i] != 0) {
|
2017-08-18 19:06:02 +01:00
|
|
|
return 1; // a > b
|
2014-06-20 20:00:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return bn_cmp_words(a, b, cl);
|
|
|
|
}
|
|
|
|
|
|
|
|
int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w) {
|
|
|
|
switch (bn->top) {
|
|
|
|
case 1:
|
|
|
|
return bn->d[0] == w;
|
|
|
|
case 0:
|
|
|
|
return w == 0;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-25 21:36:58 +01:00
|
|
|
int BN_cmp_word(const BIGNUM *a, BN_ULONG b) {
|
|
|
|
BIGNUM b_bn;
|
|
|
|
BN_init(&b_bn);
|
|
|
|
|
|
|
|
b_bn.d = &b;
|
|
|
|
b_bn.top = b > 0;
|
|
|
|
b_bn.dmax = 1;
|
|
|
|
b_bn.flags = BN_FLG_STATIC_DATA;
|
|
|
|
return BN_cmp(a, &b_bn);
|
|
|
|
}
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
int BN_is_zero(const BIGNUM *bn) {
|
|
|
|
return bn->top == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BN_is_one(const BIGNUM *bn) {
|
|
|
|
return bn->neg == 0 && BN_abs_is_word(bn, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
int BN_is_word(const BIGNUM *bn, BN_ULONG w) {
|
|
|
|
return BN_abs_is_word(bn, w) && (w == 0 || bn->neg == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int BN_is_odd(const BIGNUM *bn) {
|
|
|
|
return bn->top > 0 && (bn->d[0] & 1) == 1;
|
|
|
|
}
|
Verify RSA private key operation regardless of whether CRT is used.
Previously, the verification was only done when using the CRT method,
as the CRT method has been shown to be extremely sensitive to fault
attacks. However, there's no reason to avoid doing the verification
when the non-CRT method is used (performance-sensitive applications
should always be using the CRT-capable keys).
Previously, when we detected a fault (attack) through this verification,
libcrypto would fall back to the non-CRT method and assume that the
non-CRT method would give a correct result, despite having just
detecting corruption that is likely from an attack. Instead, just give
up, like NSS does.
Previously, the code tried to handle the case where the input was not
reduced mod rsa->n. This is (was) not possible, so avoid trying to
handle that. This simplifies the equality check and lets us use
|CRYPTO_memcmp|.
Change-Id: I78d1e55520a1c8c280cae2b7256e12ff6290507d
Reviewed-on: https://boringssl-review.googlesource.com/7582
Reviewed-by: David Benjamin <davidben@google.com>
2016-03-25 22:23:16 +00:00
|
|
|
|
2017-01-30 19:52:27 +00:00
|
|
|
int BN_is_pow2(const BIGNUM *bn) {
|
|
|
|
if (bn->top == 0 || bn->neg) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < bn->top - 1; i++) {
|
|
|
|
if (bn->d[i] != 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0 == (bn->d[bn->top-1] & (bn->d[bn->top-1] - 1));
|
|
|
|
}
|
|
|
|
|
Verify RSA private key operation regardless of whether CRT is used.
Previously, the verification was only done when using the CRT method,
as the CRT method has been shown to be extremely sensitive to fault
attacks. However, there's no reason to avoid doing the verification
when the non-CRT method is used (performance-sensitive applications
should always be using the CRT-capable keys).
Previously, when we detected a fault (attack) through this verification,
libcrypto would fall back to the non-CRT method and assume that the
non-CRT method would give a correct result, despite having just
detecting corruption that is likely from an attack. Instead, just give
up, like NSS does.
Previously, the code tried to handle the case where the input was not
reduced mod rsa->n. This is (was) not possible, so avoid trying to
handle that. This simplifies the equality check and lets us use
|CRYPTO_memcmp|.
Change-Id: I78d1e55520a1c8c280cae2b7256e12ff6290507d
Reviewed-on: https://boringssl-review.googlesource.com/7582
Reviewed-by: David Benjamin <davidben@google.com>
2016-03-25 22:23:16 +00:00
|
|
|
int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b) {
|
|
|
|
if (a->top != b->top) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int limbs_are_equal =
|
|
|
|
CRYPTO_memcmp(a->d, b->d, (size_t)a->top * sizeof(a->d[0])) == 0;
|
|
|
|
|
|
|
|
return constant_time_select_int(constant_time_eq_int(a->neg, b->neg),
|
|
|
|
limbs_are_equal, 0);
|
|
|
|
}
|