boringssl/crypto/x509/x_pubkey.c

366 lines
10 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/thread.h>
#include <openssl/x509.h>
#include "../internal.h"
/* Minor tweak to operation: free up EVP_PKEY */
static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_POST) {
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
}
return 1;
}
ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
{
X509_PUBKEY *pk = NULL;
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
uint8_t *spki = NULL;
size_t spki_len;
if (x == NULL)
return (0);
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
CBB cbb;
if (!CBB_init(&cbb, 0) ||
!EVP_marshal_public_key(&cbb, pkey) ||
!CBB_finish(&cbb, &spki, &spki_len) ||
spki_len > LONG_MAX) {
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_ENCODE_ERROR);
goto error;
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
}
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
const uint8_t *p = spki;
pk = d2i_X509_PUBKEY(NULL, &p, (long)spki_len);
if (pk == NULL || p != spki + spki_len) {
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
OPENSSL_free(spki);
X509_PUBKEY_free(*x);
*x = pk;
return 1;
error:
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
X509_PUBKEY_free(pk);
OPENSSL_free(spki);
return 0;
}
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
/* g_pubkey_lock is used to protect the initialisation of the |pkey| member of
* |X509_PUBKEY| objects. Really |X509_PUBKEY| should have a |CRYPTO_once_t|
* inside it for this, but |CRYPTO_once_t| is private and |X509_PUBKEY| is
* not. */
static struct CRYPTO_STATIC_MUTEX g_pubkey_lock = CRYPTO_STATIC_MUTEX_INIT;
EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
{
EVP_PKEY *ret = NULL;
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
uint8_t *spki = NULL;
if (key == NULL)
goto error;
CRYPTO_STATIC_MUTEX_lock_read(&g_pubkey_lock);
if (key->pkey != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
return EVP_PKEY_up_ref(key->pkey);
}
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
/* Re-encode the |X509_PUBKEY| to DER and parse it. */
int spki_len = i2d_X509_PUBKEY(key, &spki);
if (spki_len < 0) {
goto error;
}
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
CBS cbs;
CBS_init(&cbs, spki, (size_t)spki_len);
ret = EVP_parse_public_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
/* Check to see if another thread set key->pkey first */
CRYPTO_STATIC_MUTEX_lock_write(&g_pubkey_lock);
if (key->pkey) {
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
EVP_PKEY_free(ret);
ret = key->pkey;
} else {
key->pkey = ret;
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
}
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
OPENSSL_free(spki);
return EVP_PKEY_up_ref(ret);
error:
Implement new SPKI parsers. Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each with different ways to set signature parameters. SPKIs themselves can get complex with id-RSASSA-PSS keys which come with various constraints in the key parameters. This suggests we want a common in-library representation of an SPKI. This adds two new functions EVP_parse_public_key and EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and implements X509_PUBKEY functions with them. EVP_PKEY seems to have been intended to be able to express the supported SPKI types with full-fidelity, so these APIs will continue this. This means future support for id-RSASSA-PSS would *not* repurpose EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and the data pointer would be some (exposed, so the caller may still check key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX implementation would enforce the key constraints. If RSA_PSS_KEY would later need its own API, that code would move there, but that seems unlikely. Ideally we'd have a 1:1 correspondence with key OID, although we may have to fudge things if mistakes happen in standardization. (Whether or not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate EVP_PKEY type.) DSA parsing hooks are still implemented, missing parameters and all for now. This isn't any worse than before. Decoupling from the giant crypto/obj OID table will be a later task. BUG=522228 Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c Reviewed-on: https://boringssl-review.googlesource.com/6861 Reviewed-by: Adam Langley <agl@google.com>
2015-12-31 02:40:40 +00:00
OPENSSL_free(spki);
EVP_PKEY_free(ret);
return NULL;
}
/*
* Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or
* decode as X509_PUBKEY
*/
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
{
X509_PUBKEY *xpk;
EVP_PKEY *pktmp;
xpk = d2i_X509_PUBKEY(NULL, pp, length);
if (!xpk)
return NULL;
pktmp = X509_PUBKEY_get(xpk);
X509_PUBKEY_free(xpk);
if (!pktmp)
return NULL;
if (a) {
EVP_PKEY_free(*a);
*a = pktmp;
}
return pktmp;
}
int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
{
X509_PUBKEY *xpk = NULL;
int ret;
if (!a)
return 0;
if (!X509_PUBKEY_set(&xpk, (EVP_PKEY *)a))
return 0;
ret = i2d_X509_PUBKEY(xpk, pp);
X509_PUBKEY_free(xpk);
return ret;
}
/*
* The following are equivalents but which return RSA and DSA keys
*/
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
RSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return NULL;
key = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (!key)
return NULL;
*pp = q;
if (a) {
RSA_free(*a);
*a = key;
}
return key;
}
int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (!pktmp) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_PKEY_set1_RSA(pktmp, (RSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return ret;
}
#ifndef OPENSSL_NO_DSA
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return NULL;
key = EVP_PKEY_get1_DSA(pkey);
EVP_PKEY_free(pkey);
if (!key)
return NULL;
*pp = q;
if (a) {
DSA_free(*a);
*a = key;
}
return key;
}
int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (!pktmp) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_PKEY_set1_DSA(pktmp, (DSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return ret;
}
#endif
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
EC_KEY *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return (NULL);
key = EVP_PKEY_get1_EC_KEY(pkey);
EVP_PKEY_free(pkey);
if (!key)
return (NULL);
*pp = q;
if (a) {
EC_KEY_free(*a);
*a = key;
}
return (key);
}
int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return (0);
if ((pktmp = EVP_PKEY_new()) == NULL) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return (0);
}
EVP_PKEY_set1_EC_KEY(pktmp, (EC_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return (ret);
}
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, const ASN1_OBJECT *aobj,
int ptype, void *pval,
unsigned char *penc, int penclen)
{
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
return 0;
if (penc) {
if (pub->public_key->data)
OPENSSL_free(pub->public_key->data);
pub->public_key->data = penc;
pub->public_key->length = penclen;
/* Set number of unused bits to zero */
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
}
return 1;
}
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen,
X509_ALGOR **pa, X509_PUBKEY *pub)
{
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk) {
*pk = pub->public_key->data;
*ppklen = pub->public_key->length;
}
if (pa)
*pa = pub->algor;
return 1;
}