2016-07-30 03:19:46 +01:00
|
|
|
/* Copyright 2016 Brian Smith.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "internal.h"
|
2017-04-28 22:47:06 +01:00
|
|
|
#include "../../internal.h"
|
2016-07-30 03:19:46 +01:00
|
|
|
|
|
|
|
|
|
|
|
static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
|
|
|
|
|
|
|
|
OPENSSL_COMPILE_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
|
2017-04-28 22:47:06 +01:00
|
|
|
BN_MONT_CTX_N0_LIMBS_VALUE_INVALID_2);
|
2016-07-30 03:19:46 +01:00
|
|
|
OPENSSL_COMPILE_ASSERT(sizeof(uint64_t) ==
|
|
|
|
BN_MONT_CTX_N0_LIMBS * sizeof(BN_ULONG),
|
|
|
|
BN_MONT_CTX_N0_LIMBS_DOES_NOT_MATCH_UINT64_T);
|
|
|
|
|
|
|
|
/* LG_LITTLE_R is log_2(r). */
|
|
|
|
#define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
|
|
|
|
|
|
|
|
uint64_t bn_mont_n0(const BIGNUM *n) {
|
|
|
|
/* These conditions are checked by the caller, |BN_MONT_CTX_set|. */
|
|
|
|
assert(!BN_is_zero(n));
|
|
|
|
assert(!BN_is_negative(n));
|
|
|
|
assert(BN_is_odd(n));
|
|
|
|
|
|
|
|
/* r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
|
|
|
|
* ensures that we can do integer division by |r| by simply ignoring
|
|
|
|
* |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
|
|
|
|
* |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
|
|
|
|
* what makes Montgomery multiplication efficient.
|
|
|
|
*
|
|
|
|
* As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
|
|
|
|
* with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
|
|
|
|
* multi-limb Montgomery multiplication of |a * b (mod n)|, given the
|
|
|
|
* unreduced product |t == a * b|, we repeatedly calculate:
|
|
|
|
*
|
|
|
|
* t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
|
|
|
|
* t2 := t1*n0*n
|
|
|
|
* t3 := t + t2
|
|
|
|
* t := t3 / r copy all limbs of |t3| except the lowest to |t|.
|
|
|
|
*
|
|
|
|
* In the last step, it would only make sense to ignore the lowest limb of
|
|
|
|
* |t3| if it were zero. The middle steps ensure that this is the case:
|
|
|
|
*
|
|
|
|
* t3 == 0 (mod r)
|
|
|
|
* t + t2 == 0 (mod r)
|
|
|
|
* t + t1*n0*n == 0 (mod r)
|
|
|
|
* t1*n0*n == -t (mod r)
|
|
|
|
* t*n0*n == -t (mod r)
|
|
|
|
* n0*n == -1 (mod r)
|
|
|
|
* n0 == -1/n (mod r)
|
|
|
|
*
|
|
|
|
* Thus, in each iteration of the loop, we multiply by the constant factor
|
|
|
|
* |n0|, the negative inverse of n (mod r). */
|
|
|
|
|
|
|
|
/* n_mod_r = n % r. As explained above, this is done by taking the lowest
|
|
|
|
* |BN_MONT_CTX_N0_LIMBS| limbs of |n|. */
|
|
|
|
uint64_t n_mod_r = n->d[0];
|
|
|
|
#if BN_MONT_CTX_N0_LIMBS == 2
|
|
|
|
if (n->top > 1) {
|
|
|
|
n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return bn_neg_inv_mod_r_u64(n_mod_r);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
|
|
|
|
* such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
|
|
|
|
* must be odd.
|
|
|
|
*
|
2016-08-18 03:32:42 +01:00
|
|
|
* This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
|
|
|
|
* Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
|
|
|
|
* It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
|
|
|
|
* Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
|
|
|
|
* (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
|
2016-07-30 03:19:46 +01:00
|
|
|
*
|
|
|
|
* This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
|
|
|
|
* (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
|
|
|
|
* constant-time with respect to |n|. We assume uint64_t additions,
|
|
|
|
* subtractions, shifts, and bitwise operations are all constant time, which
|
|
|
|
* may be a large leap of faith on 32-bit targets. We avoid division and
|
|
|
|
* multiplication, which tend to be the most problematic in terms of timing
|
|
|
|
* leaks.
|
|
|
|
*
|
|
|
|
* Most GCD implementations return values such that |u*r + v*n == 1|, so the
|
|
|
|
* caller would have to negate the resultant |v| for the purpose of Montgomery
|
|
|
|
* multiplication. This implementation does the negation implicitly by doing
|
|
|
|
* the computations as a difference instead of a sum. */
|
|
|
|
static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
|
|
|
|
assert(n % 2 == 1);
|
|
|
|
|
|
|
|
/* alpha == 2**(lg r - 1) == r / 2. */
|
|
|
|
static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
|
|
|
|
|
|
|
|
const uint64_t beta = n;
|
|
|
|
|
|
|
|
uint64_t u = 1;
|
|
|
|
uint64_t v = 0;
|
|
|
|
|
|
|
|
/* The invariant maintained from here on is:
|
|
|
|
* 2**(lg r - i) == u*2*alpha - v*beta. */
|
|
|
|
for (size_t i = 0; i < LG_LITTLE_R; ++i) {
|
|
|
|
#if BN_BITS2 == 64 && defined(BN_ULLONG)
|
|
|
|
assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
|
|
|
|
((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
|
|
|
|
* |u = (u + beta) / 2| and |v = (v / 2) + alpha|. */
|
|
|
|
|
|
|
|
uint64_t u_is_odd = UINT64_C(0) - (u & 1); /* Either 0xff..ff or 0. */
|
|
|
|
|
|
|
|
/* The addition can overflow, so use Dietz's method for it.
|
|
|
|
*
|
|
|
|
* Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
|
|
|
|
* (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
|
|
|
|
* (embedded in 64 bits to so that overflow can be ignored):
|
|
|
|
*
|
|
|
|
* (declare-fun x () (_ BitVec 64))
|
|
|
|
* (declare-fun y () (_ BitVec 64))
|
|
|
|
* (assert (let (
|
|
|
|
* (one (_ bv1 64))
|
|
|
|
* (thirtyTwo (_ bv32 64)))
|
|
|
|
* (and
|
|
|
|
* (bvult x (bvshl one thirtyTwo))
|
|
|
|
* (bvult y (bvshl one thirtyTwo))
|
|
|
|
* (not (=
|
|
|
|
* (bvadd (bvlshr (bvxor x y) one) (bvand x y))
|
|
|
|
* (bvlshr (bvadd x y) one)))
|
|
|
|
* )))
|
|
|
|
* (check-sat) */
|
|
|
|
uint64_t beta_if_u_is_odd = beta & u_is_odd; /* Either |beta| or 0. */
|
|
|
|
u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
|
|
|
|
|
|
|
|
uint64_t alpha_if_u_is_odd = alpha & u_is_odd; /* Either |alpha| or 0. */
|
|
|
|
v = (v >> 1) + alpha_if_u_is_odd;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The invariant now shows that u*r - v*n == 1 since r == 2 * alpha. */
|
|
|
|
#if BN_BITS2 == 64 && defined(BN_ULLONG)
|
|
|
|
assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return v;
|
|
|
|
}
|
2016-08-20 00:58:40 +01:00
|
|
|
|
|
|
|
/* bn_mod_exp_base_2_vartime calculates r = 2**p (mod n). |p| must be larger
|
|
|
|
* than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
|
|
|
|
* odd. */
|
|
|
|
int bn_mod_exp_base_2_vartime(BIGNUM *r, unsigned p, const BIGNUM *n) {
|
|
|
|
assert(!BN_is_zero(n));
|
|
|
|
assert(!BN_is_negative(n));
|
|
|
|
assert(BN_is_odd(n));
|
|
|
|
|
|
|
|
BN_zero(r);
|
|
|
|
|
|
|
|
unsigned n_bits = BN_num_bits(n);
|
|
|
|
assert(n_bits != 0);
|
|
|
|
if (n_bits == 1) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set |r| to the smallest power of two larger than |n|. */
|
|
|
|
assert(p > n_bits);
|
|
|
|
if (!BN_set_bit(r, n_bits)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unconditionally reduce |r|. */
|
|
|
|
assert(BN_cmp(r, n) > 0);
|
|
|
|
if (!BN_usub(r, r, n)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
assert(BN_cmp(r, n) < 0);
|
|
|
|
|
|
|
|
for (unsigned i = n_bits; i < p; ++i) {
|
|
|
|
/* This is like |BN_mod_lshift1_quick| except using |BN_usub|.
|
|
|
|
*
|
|
|
|
* TODO: Replace this with the use of a constant-time variant of
|
|
|
|
* |BN_mod_lshift1_quick|. */
|
|
|
|
if (!BN_lshift1(r, r)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (BN_cmp(r, n) >= 0) {
|
|
|
|
if (!BN_usub(r, r, n)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|