Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Fix encrypt overflow An overflow can occur in the EVP_EncryptUpdate function. If an attacker is able to supply very large amounts of input data after a previous call to EVP_EncryptUpdate with a partial block then a length check can overflow resulting in a heap corruption. Following an analysis of all OpenSSL internal usage of the EVP_EncryptUpdate function all usage is one of two forms. The first form is like this: EVP_EncryptInit() EVP_EncryptUpdate() i.e. where the EVP_EncryptUpdate() call is known to be the first called function after an EVP_EncryptInit(), and therefore that specific call must be safe. The second form is where the length passed to EVP_EncryptUpdate() can be seen from the code to be some small value and therefore there is no possibility of an overflow. [BoringSSL: We also have code that calls EVP_CIPHER functions by way of the TLS/SSL3 "AEADs". However, there we know the inputs are bounded by 2^16.] Since all instances are one of these two forms, I believe that there can be no overflows in internal code due to this problem. It should be noted that EVP_DecryptUpdate() can call EVP_EncryptUpdate() in certain code paths. Also EVP_CipherUpdate() is a synonym for EVP_EncryptUpdate(). Therefore I have checked all instances of these calls too, and came to the same conclusion, i.e. there are no instances in internal usage where an overflow could occur. This could still represent a security issue for end user code that calls this function directly. CVE-2016-2106 Issue reported by Guido Vranken. (Imported from upstream's 3ab937bc440371fbbe74318ce494ba95021f850a.) Change-Id: Iabde896555c39899c7f0f6baf7a163a7b3c2f3d6 Reviewed-on: https://boringssl-review.googlesource.com/7845 Reviewed-by: Adam Langley <agl@google.com>
8 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/cipher.h>
  57. #include <assert.h>
  58. #include <string.h>
  59. #include <openssl/err.h>
  60. #include <openssl/mem.h>
  61. #include <openssl/nid.h>
  62. #include "internal.h"
  63. const EVP_CIPHER *EVP_get_cipherbynid(int nid) {
  64. switch (nid) {
  65. case NID_rc2_cbc:
  66. return EVP_rc2_cbc();
  67. case NID_rc2_40_cbc:
  68. return EVP_rc2_40_cbc();
  69. case NID_des_ede3_cbc:
  70. return EVP_des_ede3_cbc();
  71. case NID_des_ede_cbc:
  72. return EVP_des_cbc();
  73. case NID_aes_128_cbc:
  74. return EVP_aes_128_cbc();
  75. case NID_aes_192_cbc:
  76. return EVP_aes_192_cbc();
  77. case NID_aes_256_cbc:
  78. return EVP_aes_256_cbc();
  79. default:
  80. return NULL;
  81. }
  82. }
  83. void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
  84. memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
  85. }
  86. EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
  87. EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
  88. if (ctx) {
  89. EVP_CIPHER_CTX_init(ctx);
  90. }
  91. return ctx;
  92. }
  93. int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
  94. if (c->cipher != NULL) {
  95. if (c->cipher->cleanup) {
  96. c->cipher->cleanup(c);
  97. }
  98. OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
  99. }
  100. OPENSSL_free(c->cipher_data);
  101. memset(c, 0, sizeof(EVP_CIPHER_CTX));
  102. return 1;
  103. }
  104. void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
  105. if (ctx) {
  106. EVP_CIPHER_CTX_cleanup(ctx);
  107. OPENSSL_free(ctx);
  108. }
  109. }
  110. int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
  111. if (in == NULL || in->cipher == NULL) {
  112. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
  113. return 0;
  114. }
  115. EVP_CIPHER_CTX_cleanup(out);
  116. memcpy(out, in, sizeof(EVP_CIPHER_CTX));
  117. if (in->cipher_data && in->cipher->ctx_size) {
  118. out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
  119. if (!out->cipher_data) {
  120. OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
  121. return 0;
  122. }
  123. memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
  124. }
  125. if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
  126. return in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out);
  127. }
  128. return 1;
  129. }
  130. int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  131. ENGINE *engine, const uint8_t *key, const uint8_t *iv,
  132. int enc) {
  133. if (enc == -1) {
  134. enc = ctx->encrypt;
  135. } else {
  136. if (enc) {
  137. enc = 1;
  138. }
  139. ctx->encrypt = enc;
  140. }
  141. if (cipher) {
  142. /* Ensure a context left from last time is cleared (the previous check
  143. * attempted to avoid this if the same ENGINE and EVP_CIPHER could be
  144. * used). */
  145. if (ctx->cipher) {
  146. EVP_CIPHER_CTX_cleanup(ctx);
  147. /* Restore encrypt and flags */
  148. ctx->encrypt = enc;
  149. }
  150. ctx->cipher = cipher;
  151. if (ctx->cipher->ctx_size) {
  152. ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
  153. if (!ctx->cipher_data) {
  154. ctx->cipher = NULL;
  155. OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
  156. return 0;
  157. }
  158. } else {
  159. ctx->cipher_data = NULL;
  160. }
  161. ctx->key_len = cipher->key_len;
  162. ctx->flags = 0;
  163. if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
  164. if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
  165. ctx->cipher = NULL;
  166. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
  167. return 0;
  168. }
  169. }
  170. } else if (!ctx->cipher) {
  171. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
  172. return 0;
  173. }
  174. /* we assume block size is a power of 2 in *cryptUpdate */
  175. assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
  176. ctx->cipher->block_size == 16);
  177. if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
  178. switch (EVP_CIPHER_CTX_mode(ctx)) {
  179. case EVP_CIPH_STREAM_CIPHER:
  180. case EVP_CIPH_ECB_MODE:
  181. break;
  182. case EVP_CIPH_CFB_MODE:
  183. ctx->num = 0;
  184. /* fall-through */
  185. case EVP_CIPH_CBC_MODE:
  186. assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
  187. if (iv) {
  188. memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
  189. }
  190. memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
  191. break;
  192. case EVP_CIPH_CTR_MODE:
  193. case EVP_CIPH_OFB_MODE:
  194. ctx->num = 0;
  195. /* Don't reuse IV for CTR mode */
  196. if (iv) {
  197. memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
  198. }
  199. break;
  200. default:
  201. return 0;
  202. }
  203. }
  204. if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
  205. if (!ctx->cipher->init(ctx, key, iv, enc)) {
  206. return 0;
  207. }
  208. }
  209. ctx->buf_len = 0;
  210. ctx->final_used = 0;
  211. ctx->block_mask = ctx->cipher->block_size - 1;
  212. return 1;
  213. }
  214. int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  215. ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
  216. return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
  217. }
  218. int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  219. ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
  220. return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
  221. }
  222. int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
  223. const uint8_t *in, int in_len) {
  224. int i, j, bl;
  225. if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
  226. i = ctx->cipher->cipher(ctx, out, in, in_len);
  227. if (i < 0) {
  228. return 0;
  229. } else {
  230. *out_len = i;
  231. }
  232. return 1;
  233. }
  234. if (in_len <= 0) {
  235. *out_len = 0;
  236. return in_len == 0;
  237. }
  238. if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) {
  239. if (ctx->cipher->cipher(ctx, out, in, in_len)) {
  240. *out_len = in_len;
  241. return 1;
  242. } else {
  243. *out_len = 0;
  244. return 0;
  245. }
  246. }
  247. i = ctx->buf_len;
  248. bl = ctx->cipher->block_size;
  249. assert(bl <= (int)sizeof(ctx->buf));
  250. if (i != 0) {
  251. if (bl - i > in_len) {
  252. memcpy(&ctx->buf[i], in, in_len);
  253. ctx->buf_len += in_len;
  254. *out_len = 0;
  255. return 1;
  256. } else {
  257. j = bl - i;
  258. memcpy(&ctx->buf[i], in, j);
  259. if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
  260. return 0;
  261. }
  262. in_len -= j;
  263. in += j;
  264. out += bl;
  265. *out_len = bl;
  266. }
  267. } else {
  268. *out_len = 0;
  269. }
  270. i = in_len & ctx->block_mask;
  271. in_len -= i;
  272. if (in_len > 0) {
  273. if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
  274. return 0;
  275. }
  276. *out_len += in_len;
  277. }
  278. if (i != 0) {
  279. memcpy(ctx->buf, &in[in_len], i);
  280. }
  281. ctx->buf_len = i;
  282. return 1;
  283. }
  284. int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
  285. int n, ret;
  286. unsigned int i, b, bl;
  287. if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
  288. ret = ctx->cipher->cipher(ctx, out, NULL, 0);
  289. if (ret < 0) {
  290. return 0;
  291. } else {
  292. *out_len = ret;
  293. }
  294. return 1;
  295. }
  296. b = ctx->cipher->block_size;
  297. assert(b <= sizeof(ctx->buf));
  298. if (b == 1) {
  299. *out_len = 0;
  300. return 1;
  301. }
  302. bl = ctx->buf_len;
  303. if (ctx->flags & EVP_CIPH_NO_PADDING) {
  304. if (bl) {
  305. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
  306. return 0;
  307. }
  308. *out_len = 0;
  309. return 1;
  310. }
  311. n = b - bl;
  312. for (i = bl; i < b; i++) {
  313. ctx->buf[i] = n;
  314. }
  315. ret = ctx->cipher->cipher(ctx, out, ctx->buf, b);
  316. if (ret) {
  317. *out_len = b;
  318. }
  319. return ret;
  320. }
  321. int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
  322. const uint8_t *in, int in_len) {
  323. int fix_len;
  324. unsigned int b;
  325. if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
  326. int r = ctx->cipher->cipher(ctx, out, in, in_len);
  327. if (r < 0) {
  328. *out_len = 0;
  329. return 0;
  330. } else {
  331. *out_len = r;
  332. }
  333. return 1;
  334. }
  335. if (in_len <= 0) {
  336. *out_len = 0;
  337. return in_len == 0;
  338. }
  339. if (ctx->flags & EVP_CIPH_NO_PADDING) {
  340. return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
  341. }
  342. b = ctx->cipher->block_size;
  343. assert(b <= sizeof(ctx->final));
  344. if (ctx->final_used) {
  345. memcpy(out, ctx->final, b);
  346. out += b;
  347. fix_len = 1;
  348. } else {
  349. fix_len = 0;
  350. }
  351. if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
  352. return 0;
  353. }
  354. /* if we have 'decrypted' a multiple of block size, make sure
  355. * we have a copy of this last block */
  356. if (b > 1 && !ctx->buf_len) {
  357. *out_len -= b;
  358. ctx->final_used = 1;
  359. memcpy(ctx->final, &out[*out_len], b);
  360. } else {
  361. ctx->final_used = 0;
  362. }
  363. if (fix_len) {
  364. *out_len += b;
  365. }
  366. return 1;
  367. }
  368. int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
  369. int i, n;
  370. unsigned int b;
  371. *out_len = 0;
  372. if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
  373. i = ctx->cipher->cipher(ctx, out, NULL, 0);
  374. if (i < 0) {
  375. return 0;
  376. } else {
  377. *out_len = i;
  378. }
  379. return 1;
  380. }
  381. b = ctx->cipher->block_size;
  382. if (ctx->flags & EVP_CIPH_NO_PADDING) {
  383. if (ctx->buf_len) {
  384. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
  385. return 0;
  386. }
  387. *out_len = 0;
  388. return 1;
  389. }
  390. if (b > 1) {
  391. if (ctx->buf_len || !ctx->final_used) {
  392. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
  393. return 0;
  394. }
  395. assert(b <= sizeof(ctx->final));
  396. /* The following assumes that the ciphertext has been authenticated.
  397. * Otherwise it provides a padding oracle. */
  398. n = ctx->final[b - 1];
  399. if (n == 0 || n > (int)b) {
  400. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
  401. return 0;
  402. }
  403. for (i = 0; i < n; i++) {
  404. if (ctx->final[--b] != n) {
  405. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
  406. return 0;
  407. }
  408. }
  409. n = ctx->cipher->block_size - n;
  410. for (i = 0; i < n; i++) {
  411. out[i] = ctx->final[i];
  412. }
  413. *out_len = n;
  414. } else {
  415. *out_len = 0;
  416. }
  417. return 1;
  418. }
  419. int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
  420. size_t in_len) {
  421. return ctx->cipher->cipher(ctx, out, in, in_len);
  422. }
  423. int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
  424. const uint8_t *in, int in_len) {
  425. if (ctx->encrypt) {
  426. return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
  427. } else {
  428. return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
  429. }
  430. }
  431. int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
  432. if (ctx->encrypt) {
  433. return EVP_EncryptFinal_ex(ctx, out, out_len);
  434. } else {
  435. return EVP_DecryptFinal_ex(ctx, out, out_len);
  436. }
  437. }
  438. const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
  439. return ctx->cipher;
  440. }
  441. int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
  442. return ctx->cipher->nid;
  443. }
  444. unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
  445. return ctx->cipher->block_size;
  446. }
  447. unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
  448. return ctx->key_len;
  449. }
  450. unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
  451. return ctx->cipher->iv_len;
  452. }
  453. void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
  454. return ctx->app_data;
  455. }
  456. void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
  457. ctx->app_data = data;
  458. }
  459. uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
  460. return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
  461. }
  462. uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
  463. return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
  464. }
  465. int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
  466. int ret;
  467. if (!ctx->cipher) {
  468. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
  469. return 0;
  470. }
  471. if (!ctx->cipher->ctrl) {
  472. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
  473. return 0;
  474. }
  475. ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
  476. if (ret == -1) {
  477. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
  478. return 0;
  479. }
  480. return ret;
  481. }
  482. int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
  483. if (pad) {
  484. ctx->flags &= ~EVP_CIPH_NO_PADDING;
  485. } else {
  486. ctx->flags |= EVP_CIPH_NO_PADDING;
  487. }
  488. return 1;
  489. }
  490. int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
  491. if (c->key_len == key_len) {
  492. return 1;
  493. }
  494. if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
  495. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
  496. return 0;
  497. }
  498. c->key_len = key_len;
  499. return 1;
  500. }
  501. int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
  502. unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
  503. return cipher->block_size;
  504. }
  505. unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
  506. return cipher->key_len;
  507. }
  508. unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
  509. return cipher->iv_len;
  510. }
  511. uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
  512. return cipher->flags & ~EVP_CIPH_MODE_MASK;
  513. }
  514. uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
  515. return cipher->flags & EVP_CIPH_MODE_MASK;
  516. }
  517. int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  518. const uint8_t *key, const uint8_t *iv, int enc) {
  519. if (cipher) {
  520. EVP_CIPHER_CTX_init(ctx);
  521. }
  522. return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
  523. }
  524. int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  525. const uint8_t *key, const uint8_t *iv) {
  526. return EVP_CipherInit(ctx, cipher, key, iv, 1);
  527. }
  528. int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
  529. const uint8_t *key, const uint8_t *iv) {
  530. return EVP_CipherInit(ctx, cipher, key, iv, 0);
  531. }
  532. int EVP_add_cipher_alias(const char *a, const char *b) {
  533. return 1;
  534. }
  535. const EVP_CIPHER *EVP_get_cipherbyname(const char *name) {
  536. if (OPENSSL_strcasecmp(name, "rc4") == 0) {
  537. return EVP_rc4();
  538. } else if (OPENSSL_strcasecmp(name, "des-cbc") == 0) {
  539. return EVP_des_cbc();
  540. } else if (OPENSSL_strcasecmp(name, "des-ede3-cbc") == 0 ||
  541. OPENSSL_strcasecmp(name, "3des") == 0) {
  542. return EVP_des_ede3_cbc();
  543. } else if (OPENSSL_strcasecmp(name, "aes-128-cbc") == 0) {
  544. return EVP_aes_128_cbc();
  545. } else if (OPENSSL_strcasecmp(name, "aes-256-cbc") == 0) {
  546. return EVP_aes_256_cbc();
  547. } else if (OPENSSL_strcasecmp(name, "aes-128-ctr") == 0) {
  548. return EVP_aes_128_ctr();
  549. } else if (OPENSSL_strcasecmp(name, "aes-256-ctr") == 0) {
  550. return EVP_aes_256_ctr();
  551. } else if (OPENSSL_strcasecmp(name, "aes-128-ecb") == 0) {
  552. return EVP_aes_128_ecb();
  553. } else if (OPENSSL_strcasecmp(name, "aes-256-ecb") == 0) {
  554. return EVP_aes_256_ecb();
  555. }
  556. return NULL;
  557. }