Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/cipher.h>
  57. #include <openssl/nid.h>
  58. #include "internal.h"
  59. #define c2l(c, l) \
  60. do { \
  61. (l) = ((uint32_t)(*((c)++))); \
  62. (l) |= ((uint32_t)(*((c)++))) << 8L; \
  63. (l) |= ((uint32_t)(*((c)++))) << 16L; \
  64. (l) |= ((uint32_t)(*((c)++))) << 24L; \
  65. } while (0)
  66. #define c2ln(c, l1, l2, n) \
  67. do { \
  68. (c) += (n); \
  69. (l1) = (l2) = 0; \
  70. switch (n) { \
  71. case 8: \
  72. (l2) = ((uint32_t)(*(--(c)))) << 24L; \
  73. case 7: \
  74. (l2) |= ((uint32_t)(*(--(c)))) << 16L; \
  75. case 6: \
  76. (l2) |= ((uint32_t)(*(--(c)))) << 8L; \
  77. case 5: \
  78. (l2) |= ((uint32_t)(*(--(c)))); \
  79. case 4: \
  80. (l1) = ((uint32_t)(*(--(c)))) << 24L; \
  81. case 3: \
  82. (l1) |= ((uint32_t)(*(--(c)))) << 16L; \
  83. case 2: \
  84. (l1) |= ((uint32_t)(*(--(c)))) << 8L; \
  85. case 1: \
  86. (l1) |= ((uint32_t)(*(--(c)))); \
  87. } \
  88. } while (0)
  89. #define l2c(l, c) \
  90. do { \
  91. *((c)++) = (uint8_t)(((l)) & 0xff); \
  92. *((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \
  93. *((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \
  94. *((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \
  95. } while (0)
  96. #define l2cn(l1, l2, c, n) \
  97. do { \
  98. (c) += (n); \
  99. switch (n) { \
  100. case 8: \
  101. *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \
  102. case 7: \
  103. *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \
  104. case 6: \
  105. *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \
  106. case 5: \
  107. *(--(c)) = (uint8_t)(((l2)) & 0xff); \
  108. case 4: \
  109. *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \
  110. case 3: \
  111. *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \
  112. case 2: \
  113. *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \
  114. case 1: \
  115. *(--(c)) = (uint8_t)(((l1)) & 0xff); \
  116. } \
  117. } while (0)
  118. typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY;
  119. static void RC2_encrypt(uint32_t *d, RC2_KEY *key) {
  120. int i, n;
  121. uint16_t *p0, *p1;
  122. uint16_t x0, x1, x2, x3, t;
  123. uint32_t l;
  124. l = d[0];
  125. x0 = (uint16_t)l & 0xffff;
  126. x1 = (uint16_t)(l >> 16L);
  127. l = d[1];
  128. x2 = (uint16_t)l & 0xffff;
  129. x3 = (uint16_t)(l >> 16L);
  130. n = 3;
  131. i = 5;
  132. p0 = p1 = &key->data[0];
  133. for (;;) {
  134. t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff;
  135. x0 = (t << 1) | (t >> 15);
  136. t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff;
  137. x1 = (t << 2) | (t >> 14);
  138. t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff;
  139. x2 = (t << 3) | (t >> 13);
  140. t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff;
  141. x3 = (t << 5) | (t >> 11);
  142. if (--i == 0) {
  143. if (--n == 0) {
  144. break;
  145. }
  146. i = (n == 2) ? 6 : 5;
  147. x0 += p1[x3 & 0x3f];
  148. x1 += p1[x0 & 0x3f];
  149. x2 += p1[x1 & 0x3f];
  150. x3 += p1[x2 & 0x3f];
  151. }
  152. }
  153. d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
  154. d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
  155. }
  156. static void RC2_decrypt(uint32_t *d, RC2_KEY *key) {
  157. int i, n;
  158. uint16_t *p0, *p1;
  159. uint16_t x0, x1, x2, x3, t;
  160. uint32_t l;
  161. l = d[0];
  162. x0 = (uint16_t)l & 0xffff;
  163. x1 = (uint16_t)(l >> 16L);
  164. l = d[1];
  165. x2 = (uint16_t)l & 0xffff;
  166. x3 = (uint16_t)(l >> 16L);
  167. n = 3;
  168. i = 5;
  169. p0 = &key->data[63];
  170. p1 = &key->data[0];
  171. for (;;) {
  172. t = ((x3 << 11) | (x3 >> 5)) & 0xffff;
  173. x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff;
  174. t = ((x2 << 13) | (x2 >> 3)) & 0xffff;
  175. x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff;
  176. t = ((x1 << 14) | (x1 >> 2)) & 0xffff;
  177. x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff;
  178. t = ((x0 << 15) | (x0 >> 1)) & 0xffff;
  179. x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff;
  180. if (--i == 0) {
  181. if (--n == 0) {
  182. break;
  183. }
  184. i = (n == 2) ? 6 : 5;
  185. x3 = (x3 - p1[x2 & 0x3f]) & 0xffff;
  186. x2 = (x2 - p1[x1 & 0x3f]) & 0xffff;
  187. x1 = (x1 - p1[x0 & 0x3f]) & 0xffff;
  188. x0 = (x0 - p1[x3 & 0x3f]) & 0xffff;
  189. }
  190. }
  191. d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
  192. d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
  193. }
  194. static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
  195. RC2_KEY *ks, uint8_t *iv, int encrypt) {
  196. uint32_t tin0, tin1;
  197. uint32_t tout0, tout1, xor0, xor1;
  198. long l = length;
  199. uint32_t tin[2];
  200. if (encrypt) {
  201. c2l(iv, tout0);
  202. c2l(iv, tout1);
  203. iv -= 8;
  204. for (l -= 8; l >= 0; l -= 8) {
  205. c2l(in, tin0);
  206. c2l(in, tin1);
  207. tin0 ^= tout0;
  208. tin1 ^= tout1;
  209. tin[0] = tin0;
  210. tin[1] = tin1;
  211. RC2_encrypt(tin, ks);
  212. tout0 = tin[0];
  213. l2c(tout0, out);
  214. tout1 = tin[1];
  215. l2c(tout1, out);
  216. }
  217. if (l != -8) {
  218. c2ln(in, tin0, tin1, l + 8);
  219. tin0 ^= tout0;
  220. tin1 ^= tout1;
  221. tin[0] = tin0;
  222. tin[1] = tin1;
  223. RC2_encrypt(tin, ks);
  224. tout0 = tin[0];
  225. l2c(tout0, out);
  226. tout1 = tin[1];
  227. l2c(tout1, out);
  228. }
  229. l2c(tout0, iv);
  230. l2c(tout1, iv);
  231. } else {
  232. c2l(iv, xor0);
  233. c2l(iv, xor1);
  234. iv -= 8;
  235. for (l -= 8; l >= 0; l -= 8) {
  236. c2l(in, tin0);
  237. tin[0] = tin0;
  238. c2l(in, tin1);
  239. tin[1] = tin1;
  240. RC2_decrypt(tin, ks);
  241. tout0 = tin[0] ^ xor0;
  242. tout1 = tin[1] ^ xor1;
  243. l2c(tout0, out);
  244. l2c(tout1, out);
  245. xor0 = tin0;
  246. xor1 = tin1;
  247. }
  248. if (l != -8) {
  249. c2l(in, tin0);
  250. tin[0] = tin0;
  251. c2l(in, tin1);
  252. tin[1] = tin1;
  253. RC2_decrypt(tin, ks);
  254. tout0 = tin[0] ^ xor0;
  255. tout1 = tin[1] ^ xor1;
  256. l2cn(tout0, tout1, out, l + 8);
  257. xor0 = tin0;
  258. xor1 = tin1;
  259. }
  260. l2c(xor0, iv);
  261. l2c(xor1, iv);
  262. }
  263. tin[0] = tin[1] = 0;
  264. }
  265. static const uint8_t key_table[256] = {
  266. 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79,
  267. 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
  268. 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5,
  269. 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  270. 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22,
  271. 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
  272. 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f,
  273. 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  274. 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b,
  275. 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
  276. 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde,
  277. 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  278. 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e,
  279. 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
  280. 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85,
  281. 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  282. 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10,
  283. 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
  284. 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b,
  285. 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  286. 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68,
  287. 0xfe, 0x7f, 0xc1, 0xad,
  288. };
  289. static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) {
  290. int i, j;
  291. uint8_t *k;
  292. uint16_t *ki;
  293. unsigned int c, d;
  294. k = (uint8_t *)&key->data[0];
  295. *k = 0; /* for if there is a zero length key */
  296. if (len > 128) {
  297. len = 128;
  298. }
  299. if (bits <= 0) {
  300. bits = 1024;
  301. }
  302. if (bits > 1024) {
  303. bits = 1024;
  304. }
  305. for (i = 0; i < len; i++) {
  306. k[i] = data[i];
  307. }
  308. /* expand table */
  309. d = k[len - 1];
  310. j = 0;
  311. for (i = len; i < 128; i++, j++) {
  312. d = key_table[(k[j] + d) & 0xff];
  313. k[i] = d;
  314. }
  315. /* hmm.... key reduction to 'bits' bits */
  316. j = (bits + 7) >> 3;
  317. i = 128 - j;
  318. c = (0xff >> (-bits & 0x07));
  319. d = key_table[k[i] & c];
  320. k[i] = d;
  321. while (i--) {
  322. d = key_table[k[i + j] ^ d];
  323. k[i] = d;
  324. }
  325. /* copy from bytes into uint16_t's */
  326. ki = &(key->data[63]);
  327. for (i = 127; i >= 0; i -= 2) {
  328. *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff;
  329. }
  330. }
  331. typedef struct {
  332. int key_bits; /* effective key bits */
  333. RC2_KEY ks; /* key schedule */
  334. } EVP_RC2_KEY;
  335. static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
  336. const uint8_t *iv, int enc) {
  337. EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data;
  338. RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key,
  339. rc2_key->key_bits);
  340. return 1;
  341. }
  342. static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
  343. size_t inl) {
  344. EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
  345. static const size_t kChunkSize = 0x10000;
  346. while (inl >= kChunkSize) {
  347. RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt);
  348. inl -= kChunkSize;
  349. in += kChunkSize;
  350. out += kChunkSize;
  351. }
  352. if (inl) {
  353. RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt);
  354. }
  355. return 1;
  356. }
  357. static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) {
  358. EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
  359. switch (type) {
  360. case EVP_CTRL_INIT:
  361. key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  362. return 1;
  363. case EVP_CTRL_SET_RC2_KEY_BITS:
  364. /* Should be overridden by later call to |EVP_CTRL_INIT|, but
  365. * people call it, so it may as well work. */
  366. key->key_bits = arg;
  367. return 1;
  368. default:
  369. return -1;
  370. }
  371. }
  372. static const EVP_CIPHER rc2_40_cbc = {
  373. NID_rc2_40_cbc,
  374. 8 /* block size */,
  375. 5 /* 40 bit */,
  376. 8 /* iv len */,
  377. sizeof(EVP_RC2_KEY),
  378. EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
  379. NULL /* app_data */,
  380. rc2_init_key,
  381. rc2_cbc_cipher,
  382. NULL,
  383. rc2_ctrl,
  384. };
  385. const EVP_CIPHER *EVP_rc2_40_cbc(void) {
  386. return &rc2_40_cbc;
  387. }
  388. static const EVP_CIPHER rc2_cbc = {
  389. NID_rc2_cbc,
  390. 8 /* block size */,
  391. 16 /* 128 bit */,
  392. 8 /* iv len */,
  393. sizeof(EVP_RC2_KEY),
  394. EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
  395. NULL /* app_data */,
  396. rc2_init_key,
  397. rc2_cbc_cipher,
  398. NULL,
  399. rc2_ctrl,
  400. };
  401. const EVP_CIPHER *EVP_rc2_cbc(void) {
  402. return &rc2_cbc;
  403. }