boringssl/ssl/test/runner/common.go

650 lines
19 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"crypto"
"crypto/rand"
"crypto/x509"
"fmt"
"io"
"math/big"
"strings"
"sync"
"time"
)
const (
VersionSSL30 = 0x0300
VersionTLS10 = 0x0301
VersionTLS11 = 0x0302
VersionTLS12 = 0x0303
)
const (
maxPlaintext = 16384 // maximum plaintext payload length
maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
recordHeaderLen = 5 // record header length
maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
minVersion = VersionSSL30
maxVersion = VersionTLS12
)
// TLS record types.
type recordType uint8
const (
recordTypeChangeCipherSpec recordType = 20
recordTypeAlert recordType = 21
recordTypeHandshake recordType = 22
recordTypeApplicationData recordType = 23
)
// TLS handshake message types.
const (
typeClientHello uint8 = 1
typeServerHello uint8 = 2
typeNewSessionTicket uint8 = 4
typeCertificate uint8 = 11
typeServerKeyExchange uint8 = 12
typeCertificateRequest uint8 = 13
typeServerHelloDone uint8 = 14
typeCertificateVerify uint8 = 15
typeClientKeyExchange uint8 = 16
typeFinished uint8 = 20
typeCertificateStatus uint8 = 22
typeNextProtocol uint8 = 67 // Not IANA assigned
)
// TLS compression types.
const (
compressionNone uint8 = 0
)
// TLS extension numbers
const (
extensionServerName uint16 = 0
extensionStatusRequest uint16 = 5
extensionSupportedCurves uint16 = 10
extensionSupportedPoints uint16 = 11
extensionSignatureAlgorithms uint16 = 13
extensionSessionTicket uint16 = 35
extensionNextProtoNeg uint16 = 13172 // not IANA assigned
extensionRenegotiationInfo uint16 = 0xff01
)
// TLS signaling cipher suite values
const (
scsvRenegotiation uint16 = 0x00ff
)
// CurveID is the type of a TLS identifier for an elliptic curve. See
// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
type CurveID uint16
const (
CurveP256 CurveID = 23
CurveP384 CurveID = 24
CurveP521 CurveID = 25
)
// TLS Elliptic Curve Point Formats
// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
const (
pointFormatUncompressed uint8 = 0
)
// TLS CertificateStatusType (RFC 3546)
const (
statusTypeOCSP uint8 = 1
)
// Certificate types (for certificateRequestMsg)
const (
CertTypeRSASign = 1 // A certificate containing an RSA key
CertTypeDSSSign = 2 // A certificate containing a DSA key
CertTypeRSAFixedDH = 3 // A certificate containing a static DH key
CertTypeDSSFixedDH = 4 // A certificate containing a static DH key
// See RFC4492 sections 3 and 5.5.
CertTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
CertTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
CertTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
// Rest of these are reserved by the TLS spec
)
// Hash functions for TLS 1.2 (See RFC 5246, section A.4.1)
const (
hashSHA1 uint8 = 2
hashSHA256 uint8 = 4
)
// Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
const (
signatureRSA uint8 = 1
signatureECDSA uint8 = 3
)
// signatureAndHash mirrors the TLS 1.2, SignatureAndHashAlgorithm struct. See
// RFC 5246, section A.4.1.
type signatureAndHash struct {
hash, signature uint8
}
// supportedSKXSignatureAlgorithms contains the signature and hash algorithms
// that the code advertises as supported in a TLS 1.2 ClientHello.
var supportedSKXSignatureAlgorithms = []signatureAndHash{
{hashSHA256, signatureRSA},
{hashSHA256, signatureECDSA},
{hashSHA1, signatureRSA},
{hashSHA1, signatureECDSA},
}
// supportedClientCertSignatureAlgorithms contains the signature and hash
// algorithms that the code advertises as supported in a TLS 1.2
// CertificateRequest.
var supportedClientCertSignatureAlgorithms = []signatureAndHash{
{hashSHA256, signatureRSA},
{hashSHA256, signatureECDSA},
}
// ConnectionState records basic TLS details about the connection.
type ConnectionState struct {
Version uint16 // TLS version used by the connection (e.g. VersionTLS12)
HandshakeComplete bool // TLS handshake is complete
DidResume bool // connection resumes a previous TLS connection
CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
NegotiatedProtocol string // negotiated next protocol (from Config.NextProtos)
NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server
ServerName string // server name requested by client, if any (server side only)
PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
}
// ClientAuthType declares the policy the server will follow for
// TLS Client Authentication.
type ClientAuthType int
const (
NoClientCert ClientAuthType = iota
RequestClientCert
RequireAnyClientCert
VerifyClientCertIfGiven
RequireAndVerifyClientCert
)
// ClientSessionState contains the state needed by clients to resume TLS
// sessions.
type ClientSessionState struct {
sessionTicket []uint8 // Encrypted ticket used for session resumption with server
vers uint16 // SSL/TLS version negotiated for the session
cipherSuite uint16 // Ciphersuite negotiated for the session
masterSecret []byte // MasterSecret generated by client on a full handshake
serverCertificates []*x509.Certificate // Certificate chain presented by the server
}
// ClientSessionCache is a cache of ClientSessionState objects that can be used
// by a client to resume a TLS session with a given server. ClientSessionCache
// implementations should expect to be called concurrently from different
// goroutines.
type ClientSessionCache interface {
// Get searches for a ClientSessionState associated with the given key.
// On return, ok is true if one was found.
Get(sessionKey string) (session *ClientSessionState, ok bool)
// Put adds the ClientSessionState to the cache with the given key.
Put(sessionKey string, cs *ClientSessionState)
}
// A Config structure is used to configure a TLS client or server.
// After one has been passed to a TLS function it must not be
// modified. A Config may be reused; the tls package will also not
// modify it.
type Config struct {
// Rand provides the source of entropy for nonces and RSA blinding.
// If Rand is nil, TLS uses the cryptographic random reader in package
// crypto/rand.
// The Reader must be safe for use by multiple goroutines.
Rand io.Reader
// Time returns the current time as the number of seconds since the epoch.
// If Time is nil, TLS uses time.Now.
Time func() time.Time
// Certificates contains one or more certificate chains
// to present to the other side of the connection.
// Server configurations must include at least one certificate.
Certificates []Certificate
// NameToCertificate maps from a certificate name to an element of
// Certificates. Note that a certificate name can be of the form
// '*.example.com' and so doesn't have to be a domain name as such.
// See Config.BuildNameToCertificate
// The nil value causes the first element of Certificates to be used
// for all connections.
NameToCertificate map[string]*Certificate
// RootCAs defines the set of root certificate authorities
// that clients use when verifying server certificates.
// If RootCAs is nil, TLS uses the host's root CA set.
RootCAs *x509.CertPool
// NextProtos is a list of supported, application level protocols.
NextProtos []string
// ServerName is used to verify the hostname on the returned
// certificates unless InsecureSkipVerify is given. It is also included
// in the client's handshake to support virtual hosting.
ServerName string
// ClientAuth determines the server's policy for
// TLS Client Authentication. The default is NoClientCert.
ClientAuth ClientAuthType
// ClientCAs defines the set of root certificate authorities
// that servers use if required to verify a client certificate
// by the policy in ClientAuth.
ClientCAs *x509.CertPool
// ClientCertificateTypes defines the set of allowed client certificate
// types. The default is CertTypeRSASign and CertTypeECDSASign.
ClientCertificateTypes []byte
// InsecureSkipVerify controls whether a client verifies the
// server's certificate chain and host name.
// If InsecureSkipVerify is true, TLS accepts any certificate
// presented by the server and any host name in that certificate.
// In this mode, TLS is susceptible to man-in-the-middle attacks.
// This should be used only for testing.
InsecureSkipVerify bool
// CipherSuites is a list of supported cipher suites. If CipherSuites
// is nil, TLS uses a list of suites supported by the implementation.
CipherSuites []uint16
// PreferServerCipherSuites controls whether the server selects the
// client's most preferred ciphersuite, or the server's most preferred
// ciphersuite. If true then the server's preference, as expressed in
// the order of elements in CipherSuites, is used.
PreferServerCipherSuites bool
// SessionTicketsDisabled may be set to true to disable session ticket
// (resumption) support.
SessionTicketsDisabled bool
// SessionTicketKey is used by TLS servers to provide session
// resumption. See RFC 5077. If zero, it will be filled with
// random data before the first server handshake.
//
// If multiple servers are terminating connections for the same host
// they should all have the same SessionTicketKey. If the
// SessionTicketKey leaks, previously recorded and future TLS
// connections using that key are compromised.
SessionTicketKey [32]byte
// SessionCache is a cache of ClientSessionState entries for TLS session
// resumption.
ClientSessionCache ClientSessionCache
// MinVersion contains the minimum SSL/TLS version that is acceptable.
// If zero, then SSLv3 is taken as the minimum.
MinVersion uint16
// MaxVersion contains the maximum SSL/TLS version that is acceptable.
// If zero, then the maximum version supported by this package is used,
// which is currently TLS 1.2.
MaxVersion uint16
// CurvePreferences contains the elliptic curves that will be used in
// an ECDHE handshake, in preference order. If empty, the default will
// be used.
CurvePreferences []CurveID
// Bugs specifies optional misbehaviour to be used for testing other
// implementations.
Bugs ProtocolBugs
serverInitOnce sync.Once // guards calling (*Config).serverInit
}
type BadValue int
const (
BadValueNone BadValue = iota
BadValueNegative
BadValueZero
BadValueLimit
BadValueLarge
NumBadValues
)
type ProtocolBugs struct {
// InvalidSKXSignature specifies that the signature in a
// ServerKeyExchange message should be invalid.
InvalidSKXSignature bool
// InvalidSKXCurve causes the curve ID in the ServerKeyExchange message
// to be wrong.
InvalidSKXCurve bool
// BadECDSAR controls ways in which the 'r' value of an ECDSA signature
// can be invalid.
BadECDSAR BadValue
BadECDSAS BadValue
// MaxPadding causes CBC records to have the maximum possible padding.
MaxPadding bool
// PaddingFirstByteBad causes the first byte of the padding to be
// incorrect.
PaddingFirstByteBad bool
// PaddingFirstByteBadIf255 causes the first byte of padding to be
// incorrect if there's a maximum amount of padding (i.e. 255 bytes).
PaddingFirstByteBadIf255 bool
// FailIfNotFallbackSCSV causes a server handshake to fail if the
// client doesn't send the fallback SCSV value.
FailIfNotFallbackSCSV bool
// DuplicateExtension causes an extra empty extension of bogus type to
// be emitted in either the ClientHello or the ServerHello.
DuplicateExtension bool
// UnauthenticatedECDH causes the server to pretend ECDHE_RSA
// and ECDHE_ECDSA cipher suites are actually ECDH_anon. No
// Certificate message is sent and no signature is added to
// ServerKeyExchange.
UnauthenticatedECDH bool
// SkipServerKeyExchange causes the server to skip sending
// ServerKeyExchange messages.
SkipServerKeyExchange bool
// SkipChangeCipherSpec causes the implementation to skip
// sending the ChangeCipherSpec message (and adjusting cipher
// state accordingly for the Finished message).
SkipChangeCipherSpec bool
// EarlyChangeCipherSpec causes the client to send an early
// ChangeCipherSpec message before the ClientKeyExchange. A value of
// zero disables this behavior. One and two configure variants for 0.9.8
// and 1.0.1 modes, respectively.
EarlyChangeCipherSpec int
// FragmentAcrossChangeCipherSpec causes the implementation to fragment
// the Finished (or NextProto) message around the ChangeCipherSpec
// messages.
FragmentAcrossChangeCipherSpec bool
// SkipNewSessionTicket causes the server to skip sending the
// NewSessionTicket message despite promising to in ServerHello.
SkipNewSessionTicket bool
}
func (c *Config) serverInit() {
if c.SessionTicketsDisabled {
return
}
// If the key has already been set then we have nothing to do.
for _, b := range c.SessionTicketKey {
if b != 0 {
return
}
}
if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
c.SessionTicketsDisabled = true
}
}
func (c *Config) rand() io.Reader {
r := c.Rand
if r == nil {
return rand.Reader
}
return r
}
func (c *Config) time() time.Time {
t := c.Time
if t == nil {
t = time.Now
}
return t()
}
func (c *Config) cipherSuites() []uint16 {
s := c.CipherSuites
if s == nil {
s = defaultCipherSuites()
}
return s
}
func (c *Config) minVersion() uint16 {
if c == nil || c.MinVersion == 0 {
return minVersion
}
return c.MinVersion
}
func (c *Config) maxVersion() uint16 {
if c == nil || c.MaxVersion == 0 {
return maxVersion
}
return c.MaxVersion
}
var defaultCurvePreferences = []CurveID{CurveP256, CurveP384, CurveP521}
func (c *Config) curvePreferences() []CurveID {
if c == nil || len(c.CurvePreferences) == 0 {
return defaultCurvePreferences
}
return c.CurvePreferences
}
// mutualVersion returns the protocol version to use given the advertised
// version of the peer.
func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
minVersion := c.minVersion()
maxVersion := c.maxVersion()
if vers < minVersion {
return 0, false
}
if vers > maxVersion {
vers = maxVersion
}
return vers, true
}
// getCertificateForName returns the best certificate for the given name,
// defaulting to the first element of c.Certificates if there are no good
// options.
func (c *Config) getCertificateForName(name string) *Certificate {
if len(c.Certificates) == 1 || c.NameToCertificate == nil {
// There's only one choice, so no point doing any work.
return &c.Certificates[0]
}
name = strings.ToLower(name)
for len(name) > 0 && name[len(name)-1] == '.' {
name = name[:len(name)-1]
}
if cert, ok := c.NameToCertificate[name]; ok {
return cert
}
// try replacing labels in the name with wildcards until we get a
// match.
labels := strings.Split(name, ".")
for i := range labels {
labels[i] = "*"
candidate := strings.Join(labels, ".")
if cert, ok := c.NameToCertificate[candidate]; ok {
return cert
}
}
// If nothing matches, return the first certificate.
return &c.Certificates[0]
}
// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
// from the CommonName and SubjectAlternateName fields of each of the leaf
// certificates.
func (c *Config) BuildNameToCertificate() {
c.NameToCertificate = make(map[string]*Certificate)
for i := range c.Certificates {
cert := &c.Certificates[i]
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
continue
}
if len(x509Cert.Subject.CommonName) > 0 {
c.NameToCertificate[x509Cert.Subject.CommonName] = cert
}
for _, san := range x509Cert.DNSNames {
c.NameToCertificate[san] = cert
}
}
}
// A Certificate is a chain of one or more certificates, leaf first.
type Certificate struct {
Certificate [][]byte
PrivateKey crypto.PrivateKey // supported types: *rsa.PrivateKey, *ecdsa.PrivateKey
// OCSPStaple contains an optional OCSP response which will be served
// to clients that request it.
OCSPStaple []byte
// Leaf is the parsed form of the leaf certificate, which may be
// initialized using x509.ParseCertificate to reduce per-handshake
// processing for TLS clients doing client authentication. If nil, the
// leaf certificate will be parsed as needed.
Leaf *x509.Certificate
}
// A TLS record.
type record struct {
contentType recordType
major, minor uint8
payload []byte
}
type handshakeMessage interface {
marshal() []byte
unmarshal([]byte) bool
}
// lruSessionCache is a ClientSessionCache implementation that uses an LRU
// caching strategy.
type lruSessionCache struct {
sync.Mutex
m map[string]*list.Element
q *list.List
capacity int
}
type lruSessionCacheEntry struct {
sessionKey string
state *ClientSessionState
}
// NewLRUClientSessionCache returns a ClientSessionCache with the given
// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
// is used instead.
func NewLRUClientSessionCache(capacity int) ClientSessionCache {
const defaultSessionCacheCapacity = 64
if capacity < 1 {
capacity = defaultSessionCacheCapacity
}
return &lruSessionCache{
m: make(map[string]*list.Element),
q: list.New(),
capacity: capacity,
}
}
// Put adds the provided (sessionKey, cs) pair to the cache.
func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
c.Lock()
defer c.Unlock()
if elem, ok := c.m[sessionKey]; ok {
entry := elem.Value.(*lruSessionCacheEntry)
entry.state = cs
c.q.MoveToFront(elem)
return
}
if c.q.Len() < c.capacity {
entry := &lruSessionCacheEntry{sessionKey, cs}
c.m[sessionKey] = c.q.PushFront(entry)
return
}
elem := c.q.Back()
entry := elem.Value.(*lruSessionCacheEntry)
delete(c.m, entry.sessionKey)
entry.sessionKey = sessionKey
entry.state = cs
c.q.MoveToFront(elem)
c.m[sessionKey] = elem
}
// Get returns the ClientSessionState value associated with a given key. It
// returns (nil, false) if no value is found.
func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
c.Lock()
defer c.Unlock()
if elem, ok := c.m[sessionKey]; ok {
c.q.MoveToFront(elem)
return elem.Value.(*lruSessionCacheEntry).state, true
}
return nil, false
}
// TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
type dsaSignature struct {
R, S *big.Int
}
type ecdsaSignature dsaSignature
var emptyConfig Config
func defaultConfig() *Config {
return &emptyConfig
}
var (
once sync.Once
varDefaultCipherSuites []uint16
)
func defaultCipherSuites() []uint16 {
once.Do(initDefaultCipherSuites)
return varDefaultCipherSuites
}
func initDefaultCipherSuites() {
varDefaultCipherSuites = make([]uint16, len(cipherSuites))
for i, suite := range cipherSuites {
varDefaultCipherSuites[i] = suite.id
}
}
func unexpectedMessageError(wanted, got interface{}) error {
return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
}