Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

p224-64.c 41 KiB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187
  1. /* Copyright (c) 2015, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
  15. *
  16. * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
  17. * and Adam Langley's public domain 64-bit C implementation of curve25519. */
  18. #include <openssl/base.h>
  19. #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
  20. !defined(OPENSSL_SMALL)
  21. #include <openssl/bn.h>
  22. #include <openssl/ec.h>
  23. #include <openssl/err.h>
  24. #include <openssl/mem.h>
  25. #include <string.h>
  26. #include "internal.h"
  27. #include "../internal.h"
  28. typedef uint8_t u8;
  29. typedef uint64_t u64;
  30. typedef int64_t s64;
  31. /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
  32. * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
  33. * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
  34. * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-limb
  35. * representation is an 'felem'; a 7-widelimb representation is a 'widefelem'.
  36. * Even within felems, bits of adjacent limbs overlap, and we don't always
  37. * reduce the representations: we ensure that inputs to each felem
  38. * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, and
  39. * fit into a 128-bit word without overflow. The coefficients are then again
  40. * partially reduced to obtain an felem satisfying a_i < 2^57. We only reduce
  41. * to the unique minimal representation at the end of the computation. */
  42. typedef uint64_t limb;
  43. typedef uint128_t widelimb;
  44. typedef limb felem[4];
  45. typedef widelimb widefelem[7];
  46. /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
  47. * group order size for the elliptic curve, and we also use this type for
  48. * scalars for point multiplication. */
  49. typedef u8 felem_bytearray[28];
  50. /* Precomputed multiples of the standard generator
  51. * Points are given in coordinates (X, Y, Z) where Z normally is 1
  52. * (0 for the point at infinity).
  53. * For each field element, slice a_0 is word 0, etc.
  54. *
  55. * The table has 2 * 16 elements, starting with the following:
  56. * index | bits | point
  57. * ------+---------+------------------------------
  58. * 0 | 0 0 0 0 | 0G
  59. * 1 | 0 0 0 1 | 1G
  60. * 2 | 0 0 1 0 | 2^56G
  61. * 3 | 0 0 1 1 | (2^56 + 1)G
  62. * 4 | 0 1 0 0 | 2^112G
  63. * 5 | 0 1 0 1 | (2^112 + 1)G
  64. * 6 | 0 1 1 0 | (2^112 + 2^56)G
  65. * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
  66. * 8 | 1 0 0 0 | 2^168G
  67. * 9 | 1 0 0 1 | (2^168 + 1)G
  68. * 10 | 1 0 1 0 | (2^168 + 2^56)G
  69. * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
  70. * 12 | 1 1 0 0 | (2^168 + 2^112)G
  71. * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
  72. * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
  73. * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
  74. * followed by a copy of this with each element multiplied by 2^28.
  75. *
  76. * The reason for this is so that we can clock bits into four different
  77. * locations when doing simple scalar multiplies against the base point,
  78. * and then another four locations using the second 16 elements. */
  79. static const felem g_pre_comp[2][16][3] = {
  80. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  81. {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
  82. {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
  83. {1, 0, 0, 0}},
  84. {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
  85. {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
  86. {1, 0, 0, 0}},
  87. {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
  88. {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
  89. {1, 0, 0, 0}},
  90. {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
  91. {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
  92. {1, 0, 0, 0}},
  93. {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
  94. {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
  95. {1, 0, 0, 0}},
  96. {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
  97. {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
  98. {1, 0, 0, 0}},
  99. {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
  100. {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
  101. {1, 0, 0, 0}},
  102. {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
  103. {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
  104. {1, 0, 0, 0}},
  105. {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
  106. {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
  107. {1, 0, 0, 0}},
  108. {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
  109. {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
  110. {1, 0, 0, 0}},
  111. {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
  112. {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
  113. {1, 0, 0, 0}},
  114. {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
  115. {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
  116. {1, 0, 0, 0}},
  117. {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
  118. {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
  119. {1, 0, 0, 0}},
  120. {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
  121. {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
  122. {1, 0, 0, 0}},
  123. {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
  124. {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
  125. {1, 0, 0, 0}}},
  126. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  127. {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
  128. {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
  129. {1, 0, 0, 0}},
  130. {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
  131. {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
  132. {1, 0, 0, 0}},
  133. {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
  134. {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
  135. {1, 0, 0, 0}},
  136. {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
  137. {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
  138. {1, 0, 0, 0}},
  139. {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
  140. {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
  141. {1, 0, 0, 0}},
  142. {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
  143. {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
  144. {1, 0, 0, 0}},
  145. {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
  146. {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
  147. {1, 0, 0, 0}},
  148. {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
  149. {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
  150. {1, 0, 0, 0}},
  151. {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
  152. {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
  153. {1, 0, 0, 0}},
  154. {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
  155. {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
  156. {1, 0, 0, 0}},
  157. {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
  158. {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
  159. {1, 0, 0, 0}},
  160. {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
  161. {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
  162. {1, 0, 0, 0}},
  163. {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
  164. {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
  165. {1, 0, 0, 0}},
  166. {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
  167. {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
  168. {1, 0, 0, 0}},
  169. {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
  170. {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
  171. {1, 0, 0, 0}}}};
  172. /* Helper functions to convert field elements to/from internal representation */
  173. static void bin28_to_felem(felem out, const u8 in[28]) {
  174. out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
  175. out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
  176. out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
  177. out[3] = (*((const uint64_t *)(in + 20))) >> 8;
  178. }
  179. static void felem_to_bin28(u8 out[28], const felem in) {
  180. for (size_t i = 0; i < 7; ++i) {
  181. out[i] = in[0] >> (8 * i);
  182. out[i + 7] = in[1] >> (8 * i);
  183. out[i + 14] = in[2] >> (8 * i);
  184. out[i + 21] = in[3] >> (8 * i);
  185. }
  186. }
  187. /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
  188. static void flip_endian(u8 *out, const u8 *in, size_t len) {
  189. for (size_t i = 0; i < len; ++i) {
  190. out[i] = in[len - 1 - i];
  191. }
  192. }
  193. /* From OpenSSL BIGNUM to internal representation */
  194. static int BN_to_felem(felem out, const BIGNUM *bn) {
  195. /* BN_bn2bin eats leading zeroes */
  196. felem_bytearray b_out;
  197. memset(b_out, 0, sizeof(b_out));
  198. size_t num_bytes = BN_num_bytes(bn);
  199. if (num_bytes > sizeof(b_out) ||
  200. BN_is_negative(bn)) {
  201. OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
  202. return 0;
  203. }
  204. felem_bytearray b_in;
  205. num_bytes = BN_bn2bin(bn, b_in);
  206. flip_endian(b_out, b_in, num_bytes);
  207. bin28_to_felem(out, b_out);
  208. return 1;
  209. }
  210. /* From internal representation to OpenSSL BIGNUM */
  211. static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) {
  212. felem_bytearray b_in, b_out;
  213. felem_to_bin28(b_in, in);
  214. flip_endian(b_out, b_in, sizeof(b_out));
  215. return BN_bin2bn(b_out, sizeof(b_out), out);
  216. }
  217. /* Field operations, using the internal representation of field elements.
  218. * NB! These operations are specific to our point multiplication and cannot be
  219. * expected to be correct in general - e.g., multiplication with a large scalar
  220. * will cause an overflow. */
  221. static void felem_assign(felem out, const felem in) {
  222. out[0] = in[0];
  223. out[1] = in[1];
  224. out[2] = in[2];
  225. out[3] = in[3];
  226. }
  227. /* Sum two field elements: out += in */
  228. static void felem_sum(felem out, const felem in) {
  229. out[0] += in[0];
  230. out[1] += in[1];
  231. out[2] += in[2];
  232. out[3] += in[3];
  233. }
  234. /* Get negative value: out = -in */
  235. /* Assumes in[i] < 2^57 */
  236. static void felem_neg(felem out, const felem in) {
  237. static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
  238. static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
  239. static const limb two58m42m2 =
  240. (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
  241. /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
  242. out[0] = two58p2 - in[0];
  243. out[1] = two58m42m2 - in[1];
  244. out[2] = two58m2 - in[2];
  245. out[3] = two58m2 - in[3];
  246. }
  247. /* Subtract field elements: out -= in */
  248. /* Assumes in[i] < 2^57 */
  249. static void felem_diff(felem out, const felem in) {
  250. static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
  251. static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
  252. static const limb two58m42m2 =
  253. (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
  254. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  255. out[0] += two58p2;
  256. out[1] += two58m42m2;
  257. out[2] += two58m2;
  258. out[3] += two58m2;
  259. out[0] -= in[0];
  260. out[1] -= in[1];
  261. out[2] -= in[2];
  262. out[3] -= in[3];
  263. }
  264. /* Subtract in unreduced 128-bit mode: out -= in */
  265. /* Assumes in[i] < 2^119 */
  266. static void widefelem_diff(widefelem out, const widefelem in) {
  267. static const widelimb two120 = ((widelimb)1) << 120;
  268. static const widelimb two120m64 =
  269. (((widelimb)1) << 120) - (((widelimb)1) << 64);
  270. static const widelimb two120m104m64 =
  271. (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
  272. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  273. out[0] += two120;
  274. out[1] += two120m64;
  275. out[2] += two120m64;
  276. out[3] += two120;
  277. out[4] += two120m104m64;
  278. out[5] += two120m64;
  279. out[6] += two120m64;
  280. out[0] -= in[0];
  281. out[1] -= in[1];
  282. out[2] -= in[2];
  283. out[3] -= in[3];
  284. out[4] -= in[4];
  285. out[5] -= in[5];
  286. out[6] -= in[6];
  287. }
  288. /* Subtract in mixed mode: out128 -= in64 */
  289. /* in[i] < 2^63 */
  290. static void felem_diff_128_64(widefelem out, const felem in) {
  291. static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
  292. static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
  293. static const widelimb two64m48m8 =
  294. (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
  295. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  296. out[0] += two64p8;
  297. out[1] += two64m48m8;
  298. out[2] += two64m8;
  299. out[3] += two64m8;
  300. out[0] -= in[0];
  301. out[1] -= in[1];
  302. out[2] -= in[2];
  303. out[3] -= in[3];
  304. }
  305. /* Multiply a field element by a scalar: out = out * scalar
  306. * The scalars we actually use are small, so results fit without overflow */
  307. static void felem_scalar(felem out, const limb scalar) {
  308. out[0] *= scalar;
  309. out[1] *= scalar;
  310. out[2] *= scalar;
  311. out[3] *= scalar;
  312. }
  313. /* Multiply an unreduced field element by a scalar: out = out * scalar
  314. * The scalars we actually use are small, so results fit without overflow */
  315. static void widefelem_scalar(widefelem out, const widelimb scalar) {
  316. out[0] *= scalar;
  317. out[1] *= scalar;
  318. out[2] *= scalar;
  319. out[3] *= scalar;
  320. out[4] *= scalar;
  321. out[5] *= scalar;
  322. out[6] *= scalar;
  323. }
  324. /* Square a field element: out = in^2 */
  325. static void felem_square(widefelem out, const felem in) {
  326. limb tmp0, tmp1, tmp2;
  327. tmp0 = 2 * in[0];
  328. tmp1 = 2 * in[1];
  329. tmp2 = 2 * in[2];
  330. out[0] = ((widelimb)in[0]) * in[0];
  331. out[1] = ((widelimb)in[0]) * tmp1;
  332. out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
  333. out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
  334. out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
  335. out[5] = ((widelimb)in[3]) * tmp2;
  336. out[6] = ((widelimb)in[3]) * in[3];
  337. }
  338. /* Multiply two field elements: out = in1 * in2 */
  339. static void felem_mul(widefelem out, const felem in1, const felem in2) {
  340. out[0] = ((widelimb)in1[0]) * in2[0];
  341. out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
  342. out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] +
  343. ((widelimb)in1[2]) * in2[0];
  344. out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] +
  345. ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
  346. out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] +
  347. ((widelimb)in1[3]) * in2[1];
  348. out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
  349. out[6] = ((widelimb)in1[3]) * in2[3];
  350. }
  351. /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
  352. * Requires in[i] < 2^126,
  353. * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
  354. static void felem_reduce(felem out, const widefelem in) {
  355. static const widelimb two127p15 =
  356. (((widelimb)1) << 127) + (((widelimb)1) << 15);
  357. static const widelimb two127m71 =
  358. (((widelimb)1) << 127) - (((widelimb)1) << 71);
  359. static const widelimb two127m71m55 =
  360. (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
  361. widelimb output[5];
  362. /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
  363. output[0] = in[0] + two127p15;
  364. output[1] = in[1] + two127m71m55;
  365. output[2] = in[2] + two127m71;
  366. output[3] = in[3];
  367. output[4] = in[4];
  368. /* Eliminate in[4], in[5], in[6] */
  369. output[4] += in[6] >> 16;
  370. output[3] += (in[6] & 0xffff) << 40;
  371. output[2] -= in[6];
  372. output[3] += in[5] >> 16;
  373. output[2] += (in[5] & 0xffff) << 40;
  374. output[1] -= in[5];
  375. output[2] += output[4] >> 16;
  376. output[1] += (output[4] & 0xffff) << 40;
  377. output[0] -= output[4];
  378. /* Carry 2 -> 3 -> 4 */
  379. output[3] += output[2] >> 56;
  380. output[2] &= 0x00ffffffffffffff;
  381. output[4] = output[3] >> 56;
  382. output[3] &= 0x00ffffffffffffff;
  383. /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
  384. /* Eliminate output[4] */
  385. output[2] += output[4] >> 16;
  386. /* output[2] < 2^56 + 2^56 = 2^57 */
  387. output[1] += (output[4] & 0xffff) << 40;
  388. output[0] -= output[4];
  389. /* Carry 0 -> 1 -> 2 -> 3 */
  390. output[1] += output[0] >> 56;
  391. out[0] = output[0] & 0x00ffffffffffffff;
  392. output[2] += output[1] >> 56;
  393. /* output[2] < 2^57 + 2^72 */
  394. out[1] = output[1] & 0x00ffffffffffffff;
  395. output[3] += output[2] >> 56;
  396. /* output[3] <= 2^56 + 2^16 */
  397. out[2] = output[2] & 0x00ffffffffffffff;
  398. /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
  399. * out[3] <= 2^56 + 2^16 (due to final carry),
  400. * so out < 2*p */
  401. out[3] = output[3];
  402. }
  403. /* Reduce to unique minimal representation.
  404. * Requires 0 <= in < 2*p (always call felem_reduce first) */
  405. static void felem_contract(felem out, const felem in) {
  406. static const int64_t two56 = ((limb)1) << 56;
  407. /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
  408. /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
  409. int64_t tmp[4], a;
  410. tmp[0] = in[0];
  411. tmp[1] = in[1];
  412. tmp[2] = in[2];
  413. tmp[3] = in[3];
  414. /* Case 1: a = 1 iff in >= 2^224 */
  415. a = (in[3] >> 56);
  416. tmp[0] -= a;
  417. tmp[1] += a << 40;
  418. tmp[3] &= 0x00ffffffffffffff;
  419. /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
  420. * the lower part is non-zero */
  421. a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
  422. (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
  423. a &= 0x00ffffffffffffff;
  424. /* turn a into an all-one mask (if a = 0) or an all-zero mask */
  425. a = (a - 1) >> 63;
  426. /* subtract 2^224 - 2^96 + 1 if a is all-one */
  427. tmp[3] &= a ^ 0xffffffffffffffff;
  428. tmp[2] &= a ^ 0xffffffffffffffff;
  429. tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
  430. tmp[0] -= 1 & a;
  431. /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
  432. * be non-zero, so we only need one step */
  433. a = tmp[0] >> 63;
  434. tmp[0] += two56 & a;
  435. tmp[1] -= 1 & a;
  436. /* carry 1 -> 2 -> 3 */
  437. tmp[2] += tmp[1] >> 56;
  438. tmp[1] &= 0x00ffffffffffffff;
  439. tmp[3] += tmp[2] >> 56;
  440. tmp[2] &= 0x00ffffffffffffff;
  441. /* Now 0 <= out < p */
  442. out[0] = tmp[0];
  443. out[1] = tmp[1];
  444. out[2] = tmp[2];
  445. out[3] = tmp[3];
  446. }
  447. /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
  448. * elements are reduced to in < 2^225, so we only need to check three cases: 0,
  449. * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
  450. static limb felem_is_zero(const felem in) {
  451. limb zero = in[0] | in[1] | in[2] | in[3];
  452. zero = (((int64_t)(zero)-1) >> 63) & 1;
  453. limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
  454. (in[2] ^ 0x00ffffffffffffff) |
  455. (in[3] ^ 0x00ffffffffffffff);
  456. two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
  457. limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
  458. (in[2] ^ 0x00ffffffffffffff) |
  459. (in[3] ^ 0x01ffffffffffffff);
  460. two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
  461. return (zero | two224m96p1 | two225m97p2);
  462. }
  463. /* Invert a field element */
  464. /* Computation chain copied from djb's code */
  465. static void felem_inv(felem out, const felem in) {
  466. felem ftmp, ftmp2, ftmp3, ftmp4;
  467. widefelem tmp;
  468. felem_square(tmp, in);
  469. felem_reduce(ftmp, tmp); /* 2 */
  470. felem_mul(tmp, in, ftmp);
  471. felem_reduce(ftmp, tmp); /* 2^2 - 1 */
  472. felem_square(tmp, ftmp);
  473. felem_reduce(ftmp, tmp); /* 2^3 - 2 */
  474. felem_mul(tmp, in, ftmp);
  475. felem_reduce(ftmp, tmp); /* 2^3 - 1 */
  476. felem_square(tmp, ftmp);
  477. felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
  478. felem_square(tmp, ftmp2);
  479. felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
  480. felem_square(tmp, ftmp2);
  481. felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
  482. felem_mul(tmp, ftmp2, ftmp);
  483. felem_reduce(ftmp, tmp); /* 2^6 - 1 */
  484. felem_square(tmp, ftmp);
  485. felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
  486. for (size_t i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
  487. felem_square(tmp, ftmp2);
  488. felem_reduce(ftmp2, tmp);
  489. }
  490. felem_mul(tmp, ftmp2, ftmp);
  491. felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
  492. felem_square(tmp, ftmp2);
  493. felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
  494. for (size_t i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
  495. felem_square(tmp, ftmp3);
  496. felem_reduce(ftmp3, tmp);
  497. }
  498. felem_mul(tmp, ftmp3, ftmp2);
  499. felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
  500. felem_square(tmp, ftmp2);
  501. felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
  502. for (size_t i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
  503. felem_square(tmp, ftmp3);
  504. felem_reduce(ftmp3, tmp);
  505. }
  506. felem_mul(tmp, ftmp3, ftmp2);
  507. felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
  508. felem_square(tmp, ftmp3);
  509. felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
  510. for (size_t i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
  511. felem_square(tmp, ftmp4);
  512. felem_reduce(ftmp4, tmp);
  513. }
  514. felem_mul(tmp, ftmp3, ftmp4);
  515. felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
  516. felem_square(tmp, ftmp3);
  517. felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
  518. for (size_t i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
  519. felem_square(tmp, ftmp4);
  520. felem_reduce(ftmp4, tmp);
  521. }
  522. felem_mul(tmp, ftmp2, ftmp4);
  523. felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
  524. for (size_t i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
  525. felem_square(tmp, ftmp2);
  526. felem_reduce(ftmp2, tmp);
  527. }
  528. felem_mul(tmp, ftmp2, ftmp);
  529. felem_reduce(ftmp, tmp); /* 2^126 - 1 */
  530. felem_square(tmp, ftmp);
  531. felem_reduce(ftmp, tmp); /* 2^127 - 2 */
  532. felem_mul(tmp, ftmp, in);
  533. felem_reduce(ftmp, tmp); /* 2^127 - 1 */
  534. for (size_t i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
  535. felem_square(tmp, ftmp);
  536. felem_reduce(ftmp, tmp);
  537. }
  538. felem_mul(tmp, ftmp, ftmp3);
  539. felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
  540. }
  541. /* Copy in constant time:
  542. * if icopy == 1, copy in to out,
  543. * if icopy == 0, copy out to itself. */
  544. static void copy_conditional(felem out, const felem in, limb icopy) {
  545. /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
  546. const limb copy = -icopy;
  547. for (size_t i = 0; i < 4; ++i) {
  548. const limb tmp = copy & (in[i] ^ out[i]);
  549. out[i] ^= tmp;
  550. }
  551. }
  552. /* ELLIPTIC CURVE POINT OPERATIONS
  553. *
  554. * Points are represented in Jacobian projective coordinates:
  555. * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
  556. * or to the point at infinity if Z == 0. */
  557. /* Double an elliptic curve point:
  558. * (X', Y', Z') = 2 * (X, Y, Z), where
  559. * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
  560. * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
  561. * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
  562. * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
  563. * while x_out == y_in is not (maybe this works, but it's not tested). */
  564. static void point_double(felem x_out, felem y_out, felem z_out,
  565. const felem x_in, const felem y_in, const felem z_in) {
  566. widefelem tmp, tmp2;
  567. felem delta, gamma, beta, alpha, ftmp, ftmp2;
  568. felem_assign(ftmp, x_in);
  569. felem_assign(ftmp2, x_in);
  570. /* delta = z^2 */
  571. felem_square(tmp, z_in);
  572. felem_reduce(delta, tmp);
  573. /* gamma = y^2 */
  574. felem_square(tmp, y_in);
  575. felem_reduce(gamma, tmp);
  576. /* beta = x*gamma */
  577. felem_mul(tmp, x_in, gamma);
  578. felem_reduce(beta, tmp);
  579. /* alpha = 3*(x-delta)*(x+delta) */
  580. felem_diff(ftmp, delta);
  581. /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
  582. felem_sum(ftmp2, delta);
  583. /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
  584. felem_scalar(ftmp2, 3);
  585. /* ftmp2[i] < 3 * 2^58 < 2^60 */
  586. felem_mul(tmp, ftmp, ftmp2);
  587. /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
  588. felem_reduce(alpha, tmp);
  589. /* x' = alpha^2 - 8*beta */
  590. felem_square(tmp, alpha);
  591. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  592. felem_assign(ftmp, beta);
  593. felem_scalar(ftmp, 8);
  594. /* ftmp[i] < 8 * 2^57 = 2^60 */
  595. felem_diff_128_64(tmp, ftmp);
  596. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  597. felem_reduce(x_out, tmp);
  598. /* z' = (y + z)^2 - gamma - delta */
  599. felem_sum(delta, gamma);
  600. /* delta[i] < 2^57 + 2^57 = 2^58 */
  601. felem_assign(ftmp, y_in);
  602. felem_sum(ftmp, z_in);
  603. /* ftmp[i] < 2^57 + 2^57 = 2^58 */
  604. felem_square(tmp, ftmp);
  605. /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
  606. felem_diff_128_64(tmp, delta);
  607. /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
  608. felem_reduce(z_out, tmp);
  609. /* y' = alpha*(4*beta - x') - 8*gamma^2 */
  610. felem_scalar(beta, 4);
  611. /* beta[i] < 4 * 2^57 = 2^59 */
  612. felem_diff(beta, x_out);
  613. /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
  614. felem_mul(tmp, alpha, beta);
  615. /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
  616. felem_square(tmp2, gamma);
  617. /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
  618. widefelem_scalar(tmp2, 8);
  619. /* tmp2[i] < 8 * 2^116 = 2^119 */
  620. widefelem_diff(tmp, tmp2);
  621. /* tmp[i] < 2^119 + 2^120 < 2^121 */
  622. felem_reduce(y_out, tmp);
  623. }
  624. /* Add two elliptic curve points:
  625. * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
  626. * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
  627. * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
  628. * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
  629. * X_1)^2 - X_3) -
  630. * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
  631. * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
  632. *
  633. * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
  634. /* This function is not entirely constant-time: it includes a branch for
  635. * checking whether the two input points are equal, (while not equal to the
  636. * point at infinity). This case never happens during single point
  637. * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
  638. static void point_add(felem x3, felem y3, felem z3, const felem x1,
  639. const felem y1, const felem z1, const int mixed,
  640. const felem x2, const felem y2, const felem z2) {
  641. felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
  642. widefelem tmp, tmp2;
  643. limb z1_is_zero, z2_is_zero, x_equal, y_equal;
  644. if (!mixed) {
  645. /* ftmp2 = z2^2 */
  646. felem_square(tmp, z2);
  647. felem_reduce(ftmp2, tmp);
  648. /* ftmp4 = z2^3 */
  649. felem_mul(tmp, ftmp2, z2);
  650. felem_reduce(ftmp4, tmp);
  651. /* ftmp4 = z2^3*y1 */
  652. felem_mul(tmp2, ftmp4, y1);
  653. felem_reduce(ftmp4, tmp2);
  654. /* ftmp2 = z2^2*x1 */
  655. felem_mul(tmp2, ftmp2, x1);
  656. felem_reduce(ftmp2, tmp2);
  657. } else {
  658. /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
  659. /* ftmp4 = z2^3*y1 */
  660. felem_assign(ftmp4, y1);
  661. /* ftmp2 = z2^2*x1 */
  662. felem_assign(ftmp2, x1);
  663. }
  664. /* ftmp = z1^2 */
  665. felem_square(tmp, z1);
  666. felem_reduce(ftmp, tmp);
  667. /* ftmp3 = z1^3 */
  668. felem_mul(tmp, ftmp, z1);
  669. felem_reduce(ftmp3, tmp);
  670. /* tmp = z1^3*y2 */
  671. felem_mul(tmp, ftmp3, y2);
  672. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  673. /* ftmp3 = z1^3*y2 - z2^3*y1 */
  674. felem_diff_128_64(tmp, ftmp4);
  675. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  676. felem_reduce(ftmp3, tmp);
  677. /* tmp = z1^2*x2 */
  678. felem_mul(tmp, ftmp, x2);
  679. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  680. /* ftmp = z1^2*x2 - z2^2*x1 */
  681. felem_diff_128_64(tmp, ftmp2);
  682. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  683. felem_reduce(ftmp, tmp);
  684. /* the formulae are incorrect if the points are equal
  685. * so we check for this and do doubling if this happens */
  686. x_equal = felem_is_zero(ftmp);
  687. y_equal = felem_is_zero(ftmp3);
  688. z1_is_zero = felem_is_zero(z1);
  689. z2_is_zero = felem_is_zero(z2);
  690. /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
  691. if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
  692. point_double(x3, y3, z3, x1, y1, z1);
  693. return;
  694. }
  695. /* ftmp5 = z1*z2 */
  696. if (!mixed) {
  697. felem_mul(tmp, z1, z2);
  698. felem_reduce(ftmp5, tmp);
  699. } else {
  700. /* special case z2 = 0 is handled later */
  701. felem_assign(ftmp5, z1);
  702. }
  703. /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
  704. felem_mul(tmp, ftmp, ftmp5);
  705. felem_reduce(z_out, tmp);
  706. /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
  707. felem_assign(ftmp5, ftmp);
  708. felem_square(tmp, ftmp);
  709. felem_reduce(ftmp, tmp);
  710. /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
  711. felem_mul(tmp, ftmp, ftmp5);
  712. felem_reduce(ftmp5, tmp);
  713. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  714. felem_mul(tmp, ftmp2, ftmp);
  715. felem_reduce(ftmp2, tmp);
  716. /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  717. felem_mul(tmp, ftmp4, ftmp5);
  718. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  719. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
  720. felem_square(tmp2, ftmp3);
  721. /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
  722. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
  723. felem_diff_128_64(tmp2, ftmp5);
  724. /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
  725. /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  726. felem_assign(ftmp5, ftmp2);
  727. felem_scalar(ftmp5, 2);
  728. /* ftmp5[i] < 2 * 2^57 = 2^58 */
  729. /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
  730. 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  731. felem_diff_128_64(tmp2, ftmp5);
  732. /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
  733. felem_reduce(x_out, tmp2);
  734. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
  735. felem_diff(ftmp2, x_out);
  736. /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
  737. /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
  738. felem_mul(tmp2, ftmp3, ftmp2);
  739. /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
  740. /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
  741. z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  742. widefelem_diff(tmp2, tmp);
  743. /* tmp2[i] < 2^118 + 2^120 < 2^121 */
  744. felem_reduce(y_out, tmp2);
  745. /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
  746. * the point at infinity, so we need to check for this separately */
  747. /* if point 1 is at infinity, copy point 2 to output, and vice versa */
  748. copy_conditional(x_out, x2, z1_is_zero);
  749. copy_conditional(x_out, x1, z2_is_zero);
  750. copy_conditional(y_out, y2, z1_is_zero);
  751. copy_conditional(y_out, y1, z2_is_zero);
  752. copy_conditional(z_out, z2, z1_is_zero);
  753. copy_conditional(z_out, z1, z2_is_zero);
  754. felem_assign(x3, x_out);
  755. felem_assign(y3, y_out);
  756. felem_assign(z3, z_out);
  757. }
  758. /* select_point selects the |idx|th point from a precomputation table and
  759. * copies it to out. */
  760. static void select_point(const u64 idx, size_t size,
  761. const felem pre_comp[/*size*/][3], felem out[3]) {
  762. limb *outlimbs = &out[0][0];
  763. memset(outlimbs, 0, 3 * sizeof(felem));
  764. for (size_t i = 0; i < size; i++) {
  765. const limb *inlimbs = &pre_comp[i][0][0];
  766. u64 mask = i ^ idx;
  767. mask |= mask >> 4;
  768. mask |= mask >> 2;
  769. mask |= mask >> 1;
  770. mask &= 1;
  771. mask--;
  772. for (size_t j = 0; j < 4 * 3; j++) {
  773. outlimbs[j] |= inlimbs[j] & mask;
  774. }
  775. }
  776. }
  777. /* get_bit returns the |i|th bit in |in| */
  778. static char get_bit(const felem_bytearray in, size_t i) {
  779. if (i >= 224) {
  780. return 0;
  781. }
  782. return (in[i >> 3] >> (i & 7)) & 1;
  783. }
  784. /* Interleaved point multiplication using precomputed point multiples:
  785. * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
  786. * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
  787. * of the generator, using certain (large) precomputed multiples in g_pre_comp.
  788. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
  789. static void batch_mul(felem x_out, felem y_out, felem z_out,
  790. const felem_bytearray scalars[],
  791. const size_t num_points, const u8 *g_scalar,
  792. const felem pre_comp[][17][3]) {
  793. felem nq[3], tmp[4];
  794. u64 bits;
  795. u8 sign, digit;
  796. /* set nq to the point at infinity */
  797. memset(nq, 0, 3 * sizeof(felem));
  798. /* Loop over all scalars msb-to-lsb, interleaving additions
  799. * of multiples of the generator (two in each of the last 28 rounds)
  800. * and additions of other points multiples (every 5th round). */
  801. int skip = 1; /* save two point operations in the first round */
  802. size_t i = num_points != 0 ? 220 : 27;
  803. for (;;) {
  804. /* double */
  805. if (!skip) {
  806. point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
  807. }
  808. /* add multiples of the generator */
  809. if (g_scalar != NULL && i <= 27) {
  810. /* first, look 28 bits upwards */
  811. bits = get_bit(g_scalar, i + 196) << 3;
  812. bits |= get_bit(g_scalar, i + 140) << 2;
  813. bits |= get_bit(g_scalar, i + 84) << 1;
  814. bits |= get_bit(g_scalar, i + 28);
  815. /* select the point to add, in constant time */
  816. select_point(bits, 16, g_pre_comp[1], tmp);
  817. if (!skip) {
  818. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
  819. tmp[0], tmp[1], tmp[2]);
  820. } else {
  821. memcpy(nq, tmp, 3 * sizeof(felem));
  822. skip = 0;
  823. }
  824. /* second, look at the current position */
  825. bits = get_bit(g_scalar, i + 168) << 3;
  826. bits |= get_bit(g_scalar, i + 112) << 2;
  827. bits |= get_bit(g_scalar, i + 56) << 1;
  828. bits |= get_bit(g_scalar, i);
  829. /* select the point to add, in constant time */
  830. select_point(bits, 16, g_pre_comp[0], tmp);
  831. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
  832. tmp[1], tmp[2]);
  833. }
  834. /* do other additions every 5 doublings */
  835. if (num_points != 0 && i % 5 == 0) {
  836. /* loop over all scalars */
  837. size_t num;
  838. for (num = 0; num < num_points; ++num) {
  839. bits = get_bit(scalars[num], i + 4) << 5;
  840. bits |= get_bit(scalars[num], i + 3) << 4;
  841. bits |= get_bit(scalars[num], i + 2) << 3;
  842. bits |= get_bit(scalars[num], i + 1) << 2;
  843. bits |= get_bit(scalars[num], i) << 1;
  844. bits |= get_bit(scalars[num], i - 1);
  845. ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
  846. /* select the point to add or subtract */
  847. select_point(digit, 17, pre_comp[num], tmp);
  848. felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
  849. copy_conditional(tmp[1], tmp[3], sign);
  850. if (!skip) {
  851. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
  852. tmp[0], tmp[1], tmp[2]);
  853. } else {
  854. memcpy(nq, tmp, 3 * sizeof(felem));
  855. skip = 0;
  856. }
  857. }
  858. }
  859. if (i == 0) {
  860. break;
  861. }
  862. --i;
  863. }
  864. felem_assign(x_out, nq[0]);
  865. felem_assign(y_out, nq[1]);
  866. felem_assign(z_out, nq[2]);
  867. }
  868. /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
  869. * (X', Y') = (X/Z^2, Y/Z^3) */
  870. static int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
  871. const EC_POINT *point,
  872. BIGNUM *x, BIGNUM *y,
  873. BN_CTX *ctx) {
  874. felem z1, z2, x_in, y_in, x_out, y_out;
  875. widefelem tmp;
  876. if (EC_POINT_is_at_infinity(group, point)) {
  877. OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
  878. return 0;
  879. }
  880. if (!BN_to_felem(x_in, &point->X) ||
  881. !BN_to_felem(y_in, &point->Y) ||
  882. !BN_to_felem(z1, &point->Z)) {
  883. return 0;
  884. }
  885. felem_inv(z2, z1);
  886. felem_square(tmp, z2);
  887. felem_reduce(z1, tmp);
  888. felem_mul(tmp, x_in, z1);
  889. felem_reduce(x_in, tmp);
  890. felem_contract(x_out, x_in);
  891. if (x != NULL && !felem_to_BN(x, x_out)) {
  892. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  893. return 0;
  894. }
  895. felem_mul(tmp, z1, z2);
  896. felem_reduce(z1, tmp);
  897. felem_mul(tmp, y_in, z1);
  898. felem_reduce(y_in, tmp);
  899. felem_contract(y_out, y_in);
  900. if (y != NULL && !felem_to_BN(y, y_out)) {
  901. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  902. return 0;
  903. }
  904. return 1;
  905. }
  906. static int ec_GFp_nistp224_points_mul(const EC_GROUP *group,
  907. EC_POINT *r,
  908. const BIGNUM *g_scalar,
  909. const EC_POINT *p_,
  910. const BIGNUM *p_scalar_,
  911. BN_CTX *ctx) {
  912. /* TODO: This function used to take |points| and |scalars| as arrays of
  913. * |num| elements. The code below should be simplified to work in terms of
  914. * |p_| and |p_scalar_|. */
  915. size_t num = p_ != NULL ? 1 : 0;
  916. const EC_POINT **points = p_ != NULL ? &p_ : NULL;
  917. BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
  918. int ret = 0;
  919. BN_CTX *new_ctx = NULL;
  920. BIGNUM *x, *y, *z, *tmp_scalar;
  921. felem_bytearray g_secret;
  922. felem_bytearray *secrets = NULL;
  923. felem(*pre_comp)[17][3] = NULL;
  924. felem_bytearray tmp;
  925. size_t num_points = num;
  926. felem x_in, y_in, z_in, x_out, y_out, z_out;
  927. const EC_POINT *p = NULL;
  928. const BIGNUM *p_scalar = NULL;
  929. if (ctx == NULL) {
  930. ctx = BN_CTX_new();
  931. new_ctx = ctx;
  932. if (ctx == NULL) {
  933. return 0;
  934. }
  935. }
  936. BN_CTX_start(ctx);
  937. if ((x = BN_CTX_get(ctx)) == NULL ||
  938. (y = BN_CTX_get(ctx)) == NULL ||
  939. (z = BN_CTX_get(ctx)) == NULL ||
  940. (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
  941. goto err;
  942. }
  943. if (num_points > 0) {
  944. secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
  945. pre_comp = OPENSSL_malloc(num_points * sizeof(felem[17][3]));
  946. if (secrets == NULL ||
  947. pre_comp == NULL) {
  948. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  949. goto err;
  950. }
  951. /* we treat NULL scalars as 0, and NULL points as points at infinity,
  952. * i.e., they contribute nothing to the linear combination */
  953. memset(secrets, 0, num_points * sizeof(felem_bytearray));
  954. memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
  955. for (size_t i = 0; i < num_points; ++i) {
  956. if (i == num) {
  957. /* the generator */
  958. p = EC_GROUP_get0_generator(group);
  959. p_scalar = g_scalar;
  960. } else {
  961. /* the i^th point */
  962. p = points[i];
  963. p_scalar = scalars[i];
  964. }
  965. if (p_scalar != NULL && p != NULL) {
  966. size_t num_bytes;
  967. /* reduce g_scalar to 0 <= g_scalar < 2^224 */
  968. if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
  969. /* this is an unusual input, and we don't guarantee
  970. * constant-timeness */
  971. if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
  972. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  973. goto err;
  974. }
  975. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  976. } else {
  977. num_bytes = BN_bn2bin(p_scalar, tmp);
  978. }
  979. flip_endian(secrets[i], tmp, num_bytes);
  980. /* precompute multiples */
  981. if (!BN_to_felem(x_out, &p->X) ||
  982. !BN_to_felem(y_out, &p->Y) ||
  983. !BN_to_felem(z_out, &p->Z)) {
  984. goto err;
  985. }
  986. felem_assign(pre_comp[i][1][0], x_out);
  987. felem_assign(pre_comp[i][1][1], y_out);
  988. felem_assign(pre_comp[i][1][2], z_out);
  989. for (size_t j = 2; j <= 16; ++j) {
  990. if (j & 1) {
  991. point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
  992. pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
  993. 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
  994. pre_comp[i][j - 1][2]);
  995. } else {
  996. point_double(pre_comp[i][j][0], pre_comp[i][j][1],
  997. pre_comp[i][j][2], pre_comp[i][j / 2][0],
  998. pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
  999. }
  1000. }
  1001. }
  1002. }
  1003. }
  1004. if (g_scalar != NULL) {
  1005. memset(g_secret, 0, sizeof(g_secret));
  1006. size_t num_bytes;
  1007. /* reduce g_scalar to 0 <= g_scalar < 2^224 */
  1008. if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
  1009. /* this is an unusual input, and we don't guarantee constant-timeness */
  1010. if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
  1011. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  1012. goto err;
  1013. }
  1014. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  1015. } else {
  1016. num_bytes = BN_bn2bin(g_scalar, tmp);
  1017. }
  1018. flip_endian(g_secret, tmp, num_bytes);
  1019. }
  1020. batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
  1021. num_points, g_scalar != NULL ? g_secret : NULL,
  1022. (const felem(*)[17][3])pre_comp);
  1023. /* reduce the output to its unique minimal representation */
  1024. felem_contract(x_in, x_out);
  1025. felem_contract(y_in, y_out);
  1026. felem_contract(z_in, z_out);
  1027. if (!felem_to_BN(x, x_in) ||
  1028. !felem_to_BN(y, y_in) ||
  1029. !felem_to_BN(z, z_in)) {
  1030. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  1031. goto err;
  1032. }
  1033. ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
  1034. err:
  1035. BN_CTX_end(ctx);
  1036. BN_CTX_free(new_ctx);
  1037. OPENSSL_free(secrets);
  1038. OPENSSL_free(pre_comp);
  1039. return ret;
  1040. }
  1041. const EC_METHOD EC_GFp_nistp224_method = {
  1042. ec_GFp_simple_group_init,
  1043. ec_GFp_simple_group_finish,
  1044. ec_GFp_simple_group_copy,
  1045. ec_GFp_simple_group_set_curve,
  1046. ec_GFp_nistp224_point_get_affine_coordinates,
  1047. ec_GFp_nistp224_points_mul,
  1048. ec_GFp_simple_field_mul,
  1049. ec_GFp_simple_field_sqr,
  1050. NULL /* field_encode */,
  1051. NULL /* field_decode */,
  1052. };
  1053. #endif /* 64_BIT && !WINDOWS && !SMALL */