Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

bn.h 46 KiB

Restore the BN_mod codepath for public Montgomery moduli. https://boringssl-review.googlesource.com/10520 and then later https://boringssl-review.googlesource.com/25285 made BN_MONT_CTX_set constant-time, which is necessary for RSA's mont_p and mont_q. However, due to a typo in the benchmark, they did not correctly measure. Split BN_MONT_CTX creation into a constant-time and variable-time one. The constant-time one uses our current algorithm and the latter restores the original BN_mod codepath. Should we wish to avoid BN_mod, I have an alternate version lying around: First, BN_set_bit + bn_mod_lshift1_consttime as now to count up to 2*R. Next, observe that 2*R = BN_to_montgomery(2) and R*R = BN_to_montgomery(R) = BN_to_montgomery(2^r_bits) Also observe that BN_mod_mul_montgomery only needs n0, not RR. Split the core of BN_mod_exp_mont into its own function so the caller handles conversion. Raise 2*R to the r_bits power to get 2^r_bits*R = R*R. The advantage of that algorithm is that it is still constant-time, so we only need one BN_MONT_CTX_new. Additionally, it avoids BN_mod which is otherwise (almost, but the remaining links should be easy to cut) out of the critical path for correctness. One less operation to worry about. The disadvantage is that it is gives a 25% (RSA-2048) or 32% (RSA-4096) slower RSA verification speed. I went with the BN_mod one for the time being. Before: Did 9204 RSA 2048 signing operations in 10052053us (915.6 ops/sec) Did 326000 RSA 2048 verify (same key) operations in 10028823us (32506.3 ops/sec) Did 50830 RSA 2048 verify (fresh key) operations in 10033794us (5065.9 ops/sec) Did 1269 RSA 4096 signing operations in 10019204us (126.7 ops/sec) Did 88435 RSA 4096 verify (same key) operations in 10031129us (8816.1 ops/sec) Did 14552 RSA 4096 verify (fresh key) operations in 10053411us (1447.5 ops/sec) After: Did 9150 RSA 2048 signing operations in 10022831us (912.9 ops/sec) Did 322000 RSA 2048 verify (same key) operations in 10028604us (32108.2 ops/sec) Did 289000 RSA 2048 verify (fresh key) operations in 10017205us (28850.4 ops/sec) Did 1270 RSA 4096 signing operations in 10072950us (126.1 ops/sec) Did 87480 RSA 4096 verify (same key) operations in 10036328us (8716.3 ops/sec) Did 80730 RSA 4096 verify (fresh key) operations in 10073614us (8014.0 ops/sec) Change-Id: Ie8916d1634ccf8513ceda458fa302f09f3e93c07 Reviewed-on: https://boringssl-review.googlesource.com/27287 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
6 år sedan
Restore the BN_mod codepath for public Montgomery moduli. https://boringssl-review.googlesource.com/10520 and then later https://boringssl-review.googlesource.com/25285 made BN_MONT_CTX_set constant-time, which is necessary for RSA's mont_p and mont_q. However, due to a typo in the benchmark, they did not correctly measure. Split BN_MONT_CTX creation into a constant-time and variable-time one. The constant-time one uses our current algorithm and the latter restores the original BN_mod codepath. Should we wish to avoid BN_mod, I have an alternate version lying around: First, BN_set_bit + bn_mod_lshift1_consttime as now to count up to 2*R. Next, observe that 2*R = BN_to_montgomery(2) and R*R = BN_to_montgomery(R) = BN_to_montgomery(2^r_bits) Also observe that BN_mod_mul_montgomery only needs n0, not RR. Split the core of BN_mod_exp_mont into its own function so the caller handles conversion. Raise 2*R to the r_bits power to get 2^r_bits*R = R*R. The advantage of that algorithm is that it is still constant-time, so we only need one BN_MONT_CTX_new. Additionally, it avoids BN_mod which is otherwise (almost, but the remaining links should be easy to cut) out of the critical path for correctness. One less operation to worry about. The disadvantage is that it is gives a 25% (RSA-2048) or 32% (RSA-4096) slower RSA verification speed. I went with the BN_mod one for the time being. Before: Did 9204 RSA 2048 signing operations in 10052053us (915.6 ops/sec) Did 326000 RSA 2048 verify (same key) operations in 10028823us (32506.3 ops/sec) Did 50830 RSA 2048 verify (fresh key) operations in 10033794us (5065.9 ops/sec) Did 1269 RSA 4096 signing operations in 10019204us (126.7 ops/sec) Did 88435 RSA 4096 verify (same key) operations in 10031129us (8816.1 ops/sec) Did 14552 RSA 4096 verify (fresh key) operations in 10053411us (1447.5 ops/sec) After: Did 9150 RSA 2048 signing operations in 10022831us (912.9 ops/sec) Did 322000 RSA 2048 verify (same key) operations in 10028604us (32108.2 ops/sec) Did 289000 RSA 2048 verify (fresh key) operations in 10017205us (28850.4 ops/sec) Did 1270 RSA 4096 signing operations in 10072950us (126.1 ops/sec) Did 87480 RSA 4096 verify (same key) operations in 10036328us (8716.3 ops/sec) Did 80730 RSA 4096 verify (fresh key) operations in 10073614us (8014.0 ops/sec) Change-Id: Ie8916d1634ccf8513ceda458fa302f09f3e93c07 Reviewed-on: https://boringssl-review.googlesource.com/27287 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
6 år sedan
Restore the BN_mod codepath for public Montgomery moduli. https://boringssl-review.googlesource.com/10520 and then later https://boringssl-review.googlesource.com/25285 made BN_MONT_CTX_set constant-time, which is necessary for RSA's mont_p and mont_q. However, due to a typo in the benchmark, they did not correctly measure. Split BN_MONT_CTX creation into a constant-time and variable-time one. The constant-time one uses our current algorithm and the latter restores the original BN_mod codepath. Should we wish to avoid BN_mod, I have an alternate version lying around: First, BN_set_bit + bn_mod_lshift1_consttime as now to count up to 2*R. Next, observe that 2*R = BN_to_montgomery(2) and R*R = BN_to_montgomery(R) = BN_to_montgomery(2^r_bits) Also observe that BN_mod_mul_montgomery only needs n0, not RR. Split the core of BN_mod_exp_mont into its own function so the caller handles conversion. Raise 2*R to the r_bits power to get 2^r_bits*R = R*R. The advantage of that algorithm is that it is still constant-time, so we only need one BN_MONT_CTX_new. Additionally, it avoids BN_mod which is otherwise (almost, but the remaining links should be easy to cut) out of the critical path for correctness. One less operation to worry about. The disadvantage is that it is gives a 25% (RSA-2048) or 32% (RSA-4096) slower RSA verification speed. I went with the BN_mod one for the time being. Before: Did 9204 RSA 2048 signing operations in 10052053us (915.6 ops/sec) Did 326000 RSA 2048 verify (same key) operations in 10028823us (32506.3 ops/sec) Did 50830 RSA 2048 verify (fresh key) operations in 10033794us (5065.9 ops/sec) Did 1269 RSA 4096 signing operations in 10019204us (126.7 ops/sec) Did 88435 RSA 4096 verify (same key) operations in 10031129us (8816.1 ops/sec) Did 14552 RSA 4096 verify (fresh key) operations in 10053411us (1447.5 ops/sec) After: Did 9150 RSA 2048 signing operations in 10022831us (912.9 ops/sec) Did 322000 RSA 2048 verify (same key) operations in 10028604us (32108.2 ops/sec) Did 289000 RSA 2048 verify (fresh key) operations in 10017205us (28850.4 ops/sec) Did 1270 RSA 4096 signing operations in 10072950us (126.1 ops/sec) Did 87480 RSA 4096 verify (same key) operations in 10036328us (8716.3 ops/sec) Did 80730 RSA 4096 verify (fresh key) operations in 10073614us (8014.0 ops/sec) Change-Id: Ie8916d1634ccf8513ceda458fa302f09f3e93c07 Reviewed-on: https://boringssl-review.googlesource.com/27287 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
6 år sedan
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. *
  113. * Portions of the attached software ("Contribution") are developed by
  114. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  115. *
  116. * The Contribution is licensed pursuant to the Eric Young open source
  117. * license provided above.
  118. *
  119. * The binary polynomial arithmetic software is originally written by
  120. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  121. * Laboratories. */
  122. #ifndef OPENSSL_HEADER_BN_H
  123. #define OPENSSL_HEADER_BN_H
  124. #include <openssl/base.h>
  125. #include <openssl/thread.h>
  126. #include <inttypes.h> // for PRIu64 and friends
  127. #include <stdio.h> // for FILE*
  128. #if defined(__cplusplus)
  129. extern "C" {
  130. #endif
  131. // BN provides support for working with arbitrary sized integers. For example,
  132. // although the largest integer supported by the compiler might be 64 bits, BN
  133. // will allow you to work with numbers until you run out of memory.
  134. // BN_ULONG is the native word size when working with big integers.
  135. //
  136. // Note: on some platforms, inttypes.h does not define print format macros in
  137. // C++ unless |__STDC_FORMAT_MACROS| defined. As this is a public header, bn.h
  138. // does not define |__STDC_FORMAT_MACROS| itself. C++ source files which use the
  139. // FMT macros must define it externally.
  140. #if defined(OPENSSL_64_BIT)
  141. #define BN_ULONG uint64_t
  142. #define BN_BITS2 64
  143. #define BN_DEC_FMT1 "%" PRIu64
  144. #define BN_DEC_FMT2 "%019" PRIu64
  145. #define BN_HEX_FMT1 "%" PRIx64
  146. #define BN_HEX_FMT2 "%016" PRIx64
  147. #elif defined(OPENSSL_32_BIT)
  148. #define BN_ULONG uint32_t
  149. #define BN_BITS2 32
  150. #define BN_DEC_FMT1 "%" PRIu32
  151. #define BN_DEC_FMT2 "%09" PRIu32
  152. #define BN_HEX_FMT1 "%" PRIx32
  153. #define BN_HEX_FMT2 "%08" PRIx64
  154. #else
  155. #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
  156. #endif
  157. // Allocation and freeing.
  158. // BN_new creates a new, allocated BIGNUM and initialises it.
  159. OPENSSL_EXPORT BIGNUM *BN_new(void);
  160. // BN_init initialises a stack allocated |BIGNUM|.
  161. OPENSSL_EXPORT void BN_init(BIGNUM *bn);
  162. // BN_free frees the data referenced by |bn| and, if |bn| was originally
  163. // allocated on the heap, frees |bn| also.
  164. OPENSSL_EXPORT void BN_free(BIGNUM *bn);
  165. // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
  166. // originally allocated on the heap, frees |bn| also.
  167. OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
  168. // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
  169. // allocated BIGNUM on success or NULL otherwise.
  170. OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
  171. // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
  172. // failure.
  173. OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
  174. // BN_clear sets |bn| to zero and erases the old data.
  175. OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
  176. // BN_value_one returns a static BIGNUM with value 1.
  177. OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
  178. // Basic functions.
  179. // BN_num_bits returns the minimum number of bits needed to represent the
  180. // absolute value of |bn|.
  181. OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
  182. // BN_num_bytes returns the minimum number of bytes needed to represent the
  183. // absolute value of |bn|.
  184. OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
  185. // BN_zero sets |bn| to zero.
  186. OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
  187. // BN_one sets |bn| to one. It returns one on success or zero on allocation
  188. // failure.
  189. OPENSSL_EXPORT int BN_one(BIGNUM *bn);
  190. // BN_set_word sets |bn| to |value|. It returns one on success or zero on
  191. // allocation failure.
  192. OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
  193. // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
  194. // allocation failure.
  195. OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value);
  196. // BN_set_negative sets the sign of |bn|.
  197. OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
  198. // BN_is_negative returns one if |bn| is negative and zero otherwise.
  199. OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
  200. // Conversion functions.
  201. // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
  202. // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
  203. // |BIGNUM| is allocated and returned. It returns NULL on allocation
  204. // failure.
  205. OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
  206. // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
  207. // integer, which must have |BN_num_bytes| of space available. It returns the
  208. // number of bytes written. Note this function leaks the magnitude of |in|. If
  209. // |in| is secret, use |BN_bn2bin_padded| instead.
  210. OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
  211. // BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
  212. // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh
  213. // |BIGNUM| is allocated and returned. It returns NULL on allocation
  214. // failure.
  215. OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret);
  216. // BN_bn2le_padded serialises the absolute value of |in| to |out| as a
  217. // little-endian integer, which must have |len| of space available, padding
  218. // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|,
  219. // the function fails and returns 0. Otherwise, it returns 1.
  220. OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in);
  221. // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
  222. // big-endian integer. The integer is padded with leading zeros up to size
  223. // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
  224. // returns 0. Otherwise, it returns 1.
  225. OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
  226. // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|.
  227. OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
  228. // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
  229. // representation of |bn|. If |bn| is negative, the first char in the resulting
  230. // string will be '-'. Returns NULL on allocation failure.
  231. OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
  232. // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
  233. // a '-' to indicate a negative number and may contain trailing, non-hex data.
  234. // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
  235. // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
  236. // updates |*outp|. It returns the number of bytes of |in| processed or zero on
  237. // error.
  238. OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
  239. // BN_bn2dec returns an allocated string that contains a NUL-terminated,
  240. // decimal representation of |bn|. If |bn| is negative, the first char in the
  241. // resulting string will be '-'. Returns NULL on allocation failure.
  242. OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
  243. // BN_dec2bn parses the leading decimal number from |in|, which may be
  244. // proceeded by a '-' to indicate a negative number and may contain trailing,
  245. // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
  246. // decimal number and stores it in |*outp|. If |*outp| is NULL then it
  247. // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
  248. // of |in| processed or zero on error.
  249. OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
  250. // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
  251. // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
  252. // leading '-' is still permitted and comes before the optional 0X/0x. It
  253. // returns one on success or zero on error.
  254. OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
  255. // BN_print writes a hex encoding of |a| to |bio|. It returns one on success
  256. // and zero on error.
  257. OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
  258. // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first.
  259. OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
  260. // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
  261. // too large to be represented as a single word, the maximum possible value
  262. // will be returned.
  263. OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
  264. // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and
  265. // returns one. If |bn| is too large to be represented as a |uint64_t|, it
  266. // returns zero.
  267. OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out);
  268. // ASN.1 functions.
  269. // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
  270. // the result to |ret|. It returns one on success and zero on failure.
  271. OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret);
  272. // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
  273. // result to |cbb|. It returns one on success and zero on failure.
  274. OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
  275. // BIGNUM pools.
  276. //
  277. // Certain BIGNUM operations need to use many temporary variables and
  278. // allocating and freeing them can be quite slow. Thus such operations typically
  279. // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
  280. // argument to a public function may be NULL, in which case a local |BN_CTX|
  281. // will be created just for the lifetime of that call.
  282. //
  283. // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
  284. // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
  285. // before calling any other functions that use the |ctx| as an argument.
  286. //
  287. // Finally, |BN_CTX_end| must be called before returning from the function.
  288. // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
  289. // |BN_CTX_get| become invalid.
  290. // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure.
  291. OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
  292. // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
  293. // itself.
  294. OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
  295. // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
  296. // calls to |BN_CTX_get|.
  297. OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
  298. // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
  299. // |BN_CTX_get| has returned NULL, all future calls will also return NULL until
  300. // |BN_CTX_end| is called.
  301. OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
  302. // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
  303. // matching |BN_CTX_start| call.
  304. OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
  305. // Simple arithmetic
  306. // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
  307. // or |b|. It returns one on success and zero on allocation failure.
  308. OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  309. // BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
  310. // be the same pointer as either |a| or |b|. It returns one on success and zero
  311. // on allocation failure.
  312. OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  313. // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise.
  314. OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
  315. // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
  316. // or |b|. It returns one on success and zero on allocation failure.
  317. OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  318. // BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
  319. // |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns
  320. // one on success and zero on allocation failure.
  321. OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  322. // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
  323. // allocation failure.
  324. OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
  325. // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
  326. // |b|. Returns one on success and zero otherwise.
  327. OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  328. BN_CTX *ctx);
  329. // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
  330. // allocation failure.
  331. OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
  332. // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
  333. // |a|. Returns one on success and zero otherwise. This is more efficient than
  334. // BN_mul(r, a, a, ctx).
  335. OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
  336. // BN_div divides |numerator| by |divisor| and places the result in |quotient|
  337. // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
  338. // which case the respective value is not returned. The result is rounded
  339. // towards zero; thus if |numerator| is negative, the remainder will be zero or
  340. // negative. It returns one on success or zero on error.
  341. OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
  342. const BIGNUM *numerator, const BIGNUM *divisor,
  343. BN_CTX *ctx);
  344. // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
  345. // remainder or (BN_ULONG)-1 on error.
  346. OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
  347. // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
  348. // square root of |in|, using |ctx|. It returns one on success or zero on
  349. // error. Negative numbers and non-square numbers will result in an error with
  350. // appropriate errors on the error queue.
  351. OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
  352. // Comparison functions
  353. // BN_cmp returns a value less than, equal to or greater than zero if |a| is
  354. // less than, equal to or greater than |b|, respectively.
  355. OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
  356. // BN_cmp_word is like |BN_cmp| except it takes its second argument as a
  357. // |BN_ULONG| instead of a |BIGNUM|.
  358. OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
  359. // BN_ucmp returns a value less than, equal to or greater than zero if the
  360. // absolute value of |a| is less than, equal to or greater than the absolute
  361. // value of |b|, respectively.
  362. OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
  363. // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
  364. // It takes an amount of time dependent on the sizes of |a| and |b|, but
  365. // independent of the contents (including the signs) of |a| and |b|.
  366. OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
  367. // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
  368. // otherwise.
  369. OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
  370. // BN_is_zero returns one if |bn| is zero and zero otherwise.
  371. OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
  372. // BN_is_one returns one if |bn| equals one and zero otherwise.
  373. OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
  374. // BN_is_word returns one if |bn| is exactly |w| and zero otherwise.
  375. OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
  376. // BN_is_odd returns one if |bn| is odd and zero otherwise.
  377. OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
  378. // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise.
  379. OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a);
  380. // Bitwise operations.
  381. // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
  382. // same |BIGNUM|. It returns one on success and zero on allocation failure.
  383. OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
  384. // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
  385. // pointer. It returns one on success and zero on allocation failure.
  386. OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
  387. // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
  388. // pointer. It returns one on success and zero on allocation failure.
  389. OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
  390. // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
  391. // pointer. It returns one on success and zero on allocation failure.
  392. OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
  393. // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
  394. // is 2 then setting bit zero will make it 3. It returns one on success or zero
  395. // on allocation failure.
  396. OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
  397. // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
  398. // |a| is 3, clearing bit zero will make it two. It returns one on success or
  399. // zero on allocation failure.
  400. OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
  401. // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists
  402. // and is set. Otherwise, it returns zero.
  403. OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
  404. // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
  405. // on success or zero if |n| is negative.
  406. //
  407. // This differs from OpenSSL which additionally returns zero if |a|'s word
  408. // length is less than or equal to |n|, rounded down to a number of words. Note
  409. // word size is platform-dependent, so this behavior is also difficult to rely
  410. // on in OpenSSL and not very useful.
  411. OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
  412. // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or
  413. // the number of factors of two which divide it. It returns zero if |bn| is
  414. // zero.
  415. OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn);
  416. // Modulo arithmetic.
  417. // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error.
  418. OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
  419. // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and
  420. // 0 on error.
  421. OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
  422. // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive.
  423. // It returns 1 on success and 0 on error.
  424. OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
  425. // BN_mod is a helper macro that calls |BN_div| and discards the quotient.
  426. #define BN_mod(rem, numerator, divisor, ctx) \
  427. BN_div(NULL, (rem), (numerator), (divisor), (ctx))
  428. // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
  429. // |rem| < |divisor| is always true. It returns one on success and zero on
  430. // error.
  431. OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
  432. const BIGNUM *divisor, BN_CTX *ctx);
  433. // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
  434. // on error.
  435. OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  436. const BIGNUM *m, BN_CTX *ctx);
  437. // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
  438. // non-negative and less than |m|.
  439. OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  440. const BIGNUM *m);
  441. // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
  442. // on error.
  443. OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  444. const BIGNUM *m, BN_CTX *ctx);
  445. // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
  446. // non-negative and less than |m|.
  447. OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  448. const BIGNUM *m);
  449. // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
  450. // on error.
  451. OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  452. const BIGNUM *m, BN_CTX *ctx);
  453. // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
  454. // on error.
  455. OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
  456. BN_CTX *ctx);
  457. // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
  458. // same pointer. It returns one on success and zero on error.
  459. OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
  460. const BIGNUM *m, BN_CTX *ctx);
  461. // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
  462. // non-negative and less than |m|.
  463. OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
  464. const BIGNUM *m);
  465. // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
  466. // same pointer. It returns one on success and zero on error.
  467. OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
  468. BN_CTX *ctx);
  469. // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
  470. // non-negative and less than |m|.
  471. OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
  472. const BIGNUM *m);
  473. // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that
  474. // r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is
  475. // not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to
  476. // the error queue.
  477. OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
  478. BN_CTX *ctx);
  479. // Random and prime number generation.
  480. // The following are values for the |top| parameter of |BN_rand|.
  481. #define BN_RAND_TOP_ANY (-1)
  482. #define BN_RAND_TOP_ONE 0
  483. #define BN_RAND_TOP_TWO 1
  484. // The following are values for the |bottom| parameter of |BN_rand|.
  485. #define BN_RAND_BOTTOM_ANY 0
  486. #define BN_RAND_BOTTOM_ODD 1
  487. // BN_rand sets |rnd| to a random number of length |bits|. It returns one on
  488. // success and zero otherwise.
  489. //
  490. // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
  491. // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
  492. // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
  493. // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
  494. // significant bits randomly ended up as zeros.
  495. //
  496. // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
  497. // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
  498. // |BN_RAND_BOTTOM_ANY|, no extra action will be taken.
  499. OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
  500. // BN_pseudo_rand is an alias for |BN_rand|.
  501. OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
  502. // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
  503. // to zero and |max_exclusive| set to |range|.
  504. OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
  505. // BN_rand_range_ex sets |rnd| to a random value in
  506. // [min_inclusive..max_exclusive). It returns one on success and zero
  507. // otherwise.
  508. OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
  509. const BIGNUM *max_exclusive);
  510. // BN_pseudo_rand_range is an alias for BN_rand_range.
  511. OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
  512. // BN_GENCB holds a callback function that is used by generation functions that
  513. // can take a very long time to complete. Use |BN_GENCB_set| to initialise a
  514. // |BN_GENCB| structure.
  515. //
  516. // The callback receives the address of that |BN_GENCB| structure as its last
  517. // argument and the user is free to put an arbitrary pointer in |arg|. The other
  518. // arguments are set as follows:
  519. // event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime
  520. // number.
  521. // event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
  522. // checks.
  523. // event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished.
  524. //
  525. // The callback can return zero to abort the generation progress or one to
  526. // allow it to continue.
  527. //
  528. // When other code needs to call a BN generation function it will often take a
  529. // BN_GENCB argument and may call the function with other argument values.
  530. #define BN_GENCB_GENERATED 0
  531. #define BN_GENCB_PRIME_TEST 1
  532. struct bn_gencb_st {
  533. void *arg; // callback-specific data
  534. int (*callback)(int event, int n, struct bn_gencb_st *);
  535. };
  536. // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
  537. // |arg|.
  538. OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
  539. int (*f)(int event, int n, BN_GENCB *),
  540. void *arg);
  541. // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
  542. // the callback, or 1 if |callback| is NULL.
  543. OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
  544. // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
  545. // is non-zero then the prime will be such that (ret-1)/2 is also a prime.
  546. // (This is needed for Diffie-Hellman groups to ensure that the only subgroups
  547. // are of size 2 and (p-1)/2.).
  548. //
  549. // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
  550. // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
  551. // |add| == 1.)
  552. //
  553. // If |cb| is not NULL, it will be called during processing to give an
  554. // indication of progress. See the comments for |BN_GENCB|. It returns one on
  555. // success and zero otherwise.
  556. OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
  557. const BIGNUM *add, const BIGNUM *rem,
  558. BN_GENCB *cb);
  559. // BN_prime_checks is magic value that can be used as the |checks| argument to
  560. // the primality testing functions in order to automatically select a number of
  561. // Miller-Rabin checks that gives a false positive rate of ~2^{-80}.
  562. #define BN_prime_checks 0
  563. // bn_primality_result_t enumerates the outcomes of primality-testing.
  564. enum bn_primality_result_t {
  565. bn_probably_prime,
  566. bn_composite,
  567. bn_non_prime_power_composite,
  568. };
  569. // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
  570. // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with
  571. // |iterations| iterations and returns the result in |out_result|. Enhanced
  572. // Miller-Rabin tests primality for odd integers greater than 3, returning
  573. // |bn_probably_prime| if the number is probably prime,
  574. // |bn_non_prime_power_composite| if the number is a composite that is not the
  575. // power of a single prime, and |bn_composite| otherwise. It returns one on
  576. // success and zero on failure. If |cb| is not NULL, then it is called during
  577. // each iteration of the primality test.
  578. //
  579. // If |iterations| is |BN_prime_checks|, then a value that results in a false
  580. // positive rate lower than the number-field sieve security level of |w| is
  581. // used, provided |w| was generated randomly. |BN_prime_checks| is not suitable
  582. // for inputs potentially crafted by an adversary.
  583. OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test(
  584. enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
  585. BN_CTX *ctx, BN_GENCB *cb);
  586. // BN_primality_test sets |*is_probably_prime| to one if |candidate| is
  587. // probably a prime number by the Miller-Rabin test or zero if it's certainly
  588. // not.
  589. //
  590. // If |do_trial_division| is non-zero then |candidate| will be tested against a
  591. // list of small primes before Miller-Rabin tests. The probability of this
  592. // function returning a false positive is 2^{2*checks}. If |checks| is
  593. // |BN_prime_checks| then a value that results in a false positive rate lower
  594. // than the number-field sieve security level of |candidate| is used, provided
  595. // |candidate| was generated randomly. |BN_prime_checks| is not suitable for
  596. // inputs potentially crafted by an adversary.
  597. //
  598. // If |cb| is not NULL then it is called during the checking process. See the
  599. // comment above |BN_GENCB|.
  600. //
  601. // The function returns one on success and zero on error.
  602. OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
  603. const BIGNUM *candidate, int checks,
  604. BN_CTX *ctx, int do_trial_division,
  605. BN_GENCB *cb);
  606. // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
  607. // number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
  608. //
  609. // If |do_trial_division| is non-zero then |candidate| will be tested against a
  610. // list of small primes before Miller-Rabin tests. The probability of this
  611. // function returning one when |candidate| is composite is 2^{2*checks}. If
  612. // |checks| is |BN_prime_checks| then a value that results in a false positive
  613. // rate lower than the number-field sieve security level of |candidate| is used,
  614. // provided |candidate| was generated randomly. |BN_prime_checks| is not
  615. // suitable for inputs potentially crafted by an adversary.
  616. //
  617. // If |cb| is not NULL then it is called during the checking process. See the
  618. // comment above |BN_GENCB|.
  619. //
  620. // WARNING: deprecated. Use |BN_primality_test|.
  621. OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
  622. BN_CTX *ctx, int do_trial_division,
  623. BN_GENCB *cb);
  624. // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
  625. // |do_trial_division| set to zero.
  626. //
  627. // WARNING: deprecated: Use |BN_primality_test|.
  628. OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
  629. BN_CTX *ctx, BN_GENCB *cb);
  630. // Number theory functions
  631. // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
  632. // otherwise.
  633. OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
  634. BN_CTX *ctx);
  635. // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
  636. // fresh BIGNUM is allocated. It returns the result or NULL on error.
  637. //
  638. // If |n| is even then the operation is performed using an algorithm that avoids
  639. // some branches but which isn't constant-time. This function shouldn't be used
  640. // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is
  641. // guaranteed to be prime, use
  642. // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
  643. // advantage of Fermat's Little Theorem.
  644. OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
  645. const BIGNUM *n, BN_CTX *ctx);
  646. // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
  647. // Montgomery modulus for |mont|. |a| must be non-negative and must be less
  648. // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
  649. // value) to protect it against side-channel attacks. On failure, if the failure
  650. // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be
  651. // set to one; otherwise it will be set to zero.
  652. //
  653. // Note this function may incorrectly report |a| has no inverse if the random
  654. // blinding value has no inverse. It should only be used when |n| has few
  655. // non-invertible elements, such as an RSA modulus.
  656. int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
  657. const BN_MONT_CTX *mont, BN_CTX *ctx);
  658. // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
  659. // non-negative and must be less than |n|. |n| must be odd. This function
  660. // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
  661. // Or, if |n| is guaranteed to be prime, use
  662. // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
  663. // advantage of Fermat's Little Theorem. It returns one on success or zero on
  664. // failure. On failure, if the failure was caused by |a| having no inverse mod
  665. // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
  666. // zero.
  667. int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
  668. const BIGNUM *n, BN_CTX *ctx);
  669. // Montgomery arithmetic.
  670. // BN_MONT_CTX contains the precomputed values needed to work in a specific
  671. // Montgomery domain.
  672. // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus,
  673. // |mod| or NULL on error. Note this function assumes |mod| is public.
  674. OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod,
  675. BN_CTX *ctx);
  676. // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but
  677. // treats |mod| as secret.
  678. OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod,
  679. BN_CTX *ctx);
  680. // BN_MONT_CTX_free frees memory associated with |mont|.
  681. OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
  682. // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
  683. // NULL on error.
  684. OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
  685. const BN_MONT_CTX *from);
  686. // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
  687. // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
  688. // then stores it as |*pmont|. It returns one on success and zero on error. Note
  689. // this function assumes |mod| is public.
  690. //
  691. // If |*pmont| is already non-NULL then it does nothing and returns one.
  692. int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
  693. const BIGNUM *mod, BN_CTX *bn_ctx);
  694. // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
  695. // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
  696. // returns one on success or zero on error.
  697. OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
  698. const BN_MONT_CTX *mont, BN_CTX *ctx);
  699. // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
  700. // of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n|
  701. // is the Montgomery modulus. It returns one on success or zero on error.
  702. OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
  703. const BN_MONT_CTX *mont, BN_CTX *ctx);
  704. // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
  705. // Both |a| and |b| must already be in the Montgomery domain (by
  706. // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
  707. // range [0, n), where |n| is the Montgomery modulus. It returns one on success
  708. // or zero on error.
  709. OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
  710. const BIGNUM *b,
  711. const BN_MONT_CTX *mont, BN_CTX *ctx);
  712. // Exponentiation.
  713. // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
  714. // algorithm that leaks side-channel information. It returns one on success or
  715. // zero otherwise.
  716. OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  717. BN_CTX *ctx);
  718. // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
  719. // algorithm for the values provided. It returns one on success or zero
  720. // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the
  721. // exponent is secret.
  722. OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  723. const BIGNUM *m, BN_CTX *ctx);
  724. // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and
  725. // requires 0 <= |a| < |m|.
  726. OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  727. const BIGNUM *m, BN_CTX *ctx,
  728. const BN_MONT_CTX *mont);
  729. // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and
  730. // |m| as secret and requires 0 <= |a| < |m|.
  731. OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
  732. const BIGNUM *p, const BIGNUM *m,
  733. BN_CTX *ctx,
  734. const BN_MONT_CTX *mont);
  735. // Deprecated functions
  736. // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
  737. // of the number's length in bytes represented as a 4-byte big-endian number,
  738. // and the number itself in big-endian format, where the most significant bit
  739. // signals a negative number. (The representation of numbers with the MSB set is
  740. // prefixed with null byte). |out| must have sufficient space available; to
  741. // find the needed amount of space, call the function with |out| set to NULL.
  742. OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
  743. // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
  744. // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
  745. //
  746. // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
  747. // |out| is reused and returned. On error, NULL is returned and the error queue
  748. // is updated.
  749. OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
  750. // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
  751. // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
  752. // or zero otherwise.
  753. OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
  754. const BIGNUM *m, BN_CTX *ctx,
  755. const BN_MONT_CTX *mont);
  756. // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
  757. // or zero otherwise.
  758. OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
  759. const BIGNUM *p1, const BIGNUM *a2,
  760. const BIGNUM *p2, const BIGNUM *m,
  761. BN_CTX *ctx, const BN_MONT_CTX *mont);
  762. // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure.
  763. // Use |BN_MONT_CTX_new_for_modulus| instead.
  764. OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
  765. // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
  766. // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus|
  767. // instead.
  768. OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
  769. BN_CTX *ctx);
  770. // Private functions
  771. struct bignum_st {
  772. // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in
  773. // little-endian order. This stores the absolute value of the number.
  774. BN_ULONG *d;
  775. // width is the number of elements of |d| which are valid. This value is not
  776. // necessarily minimal; the most-significant words of |d| may be zero.
  777. // |width| determines a potentially loose upper-bound on the absolute value
  778. // of the |BIGNUM|.
  779. //
  780. // Functions taking |BIGNUM| inputs must compute the same answer for all
  781. // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other
  782. // helpers may be used to recover the minimal width, provided it is not
  783. // secret. If it is secret, use a different algorithm. Functions may output
  784. // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but
  785. // those which cause widths to unboundedly grow beyond the minimal value
  786. // should be documented such.
  787. //
  788. // Note this is different from historical |BIGNUM| semantics.
  789. int width;
  790. // dmax is number of elements of |d| which are allocated.
  791. int dmax;
  792. // neg is one if the number if negative and zero otherwise.
  793. int neg;
  794. // flags is a bitmask of |BN_FLG_*| values
  795. int flags;
  796. };
  797. struct bn_mont_ctx_st {
  798. // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It
  799. // is guaranteed to have the same width as |N|.
  800. BIGNUM RR;
  801. // N is the modulus. It is always stored in minimal form, so |N.width|
  802. // determines R.
  803. BIGNUM N;
  804. BN_ULONG n0[2]; // least significant words of (R*Ri-1)/N
  805. };
  806. OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
  807. #define BN_FLG_MALLOCED 0x01
  808. #define BN_FLG_STATIC_DATA 0x02
  809. // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying
  810. // on it will not compile. Consumers outside BoringSSL should use the
  811. // higher-level cryptographic algorithms exposed by other modules. Consumers
  812. // within the library should call the appropriate timing-sensitive algorithm
  813. // directly.
  814. #if defined(__cplusplus)
  815. } // extern C
  816. #if !defined(BORINGSSL_NO_CXX)
  817. extern "C++" {
  818. namespace bssl {
  819. BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
  820. BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
  821. BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
  822. class BN_CTXScope {
  823. public:
  824. BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); }
  825. ~BN_CTXScope() { BN_CTX_end(ctx_); }
  826. private:
  827. BN_CTX *ctx_;
  828. BN_CTXScope(BN_CTXScope &) = delete;
  829. BN_CTXScope &operator=(BN_CTXScope &) = delete;
  830. };
  831. } // namespace bssl
  832. } // extern C++
  833. #endif
  834. #endif
  835. #define BN_R_ARG2_LT_ARG3 100
  836. #define BN_R_BAD_RECIPROCAL 101
  837. #define BN_R_BIGNUM_TOO_LONG 102
  838. #define BN_R_BITS_TOO_SMALL 103
  839. #define BN_R_CALLED_WITH_EVEN_MODULUS 104
  840. #define BN_R_DIV_BY_ZERO 105
  841. #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
  842. #define BN_R_INPUT_NOT_REDUCED 107
  843. #define BN_R_INVALID_RANGE 108
  844. #define BN_R_NEGATIVE_NUMBER 109
  845. #define BN_R_NOT_A_SQUARE 110
  846. #define BN_R_NOT_INITIALIZED 111
  847. #define BN_R_NO_INVERSE 112
  848. #define BN_R_PRIVATE_KEY_TOO_LARGE 113
  849. #define BN_R_P_IS_NOT_PRIME 114
  850. #define BN_R_TOO_MANY_ITERATIONS 115
  851. #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
  852. #define BN_R_BAD_ENCODING 117
  853. #define BN_R_ENCODE_ERROR 118
  854. #define BN_R_INVALID_INPUT 119
  855. #endif // OPENSSL_HEADER_BN_H