boringssl/crypto/fipsmodule/ecdsa/ecdsa.c

314 lines
10 KiB
C
Raw Normal View History

/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ecdsa.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
#include <openssl/sha.h>
#include <openssl/type_check.h>
#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../../internal.h"
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
// ECDSA. Note this value is not fully reduced modulo the order, only the
// correct number of bits.
static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
const uint8_t *digest, size_t digest_len) {
const BIGNUM *order = &group->order;
size_t num_bits = BN_num_bits(order);
// Need to truncate digest if it is too long: first truncate whole bytes.
size_t num_bytes = (num_bits + 7) / 8;
if (digest_len > num_bytes) {
digest_len = num_bytes;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
for (size_t i = 0; i < digest_len; i++) {
out->bytes[i] = digest[digest_len - 1 - i];
}
// If it is still too long, truncate remaining bits with a shift.
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
if (8 * digest_len > num_bits) {
bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width);
}
// |out| now has the same bit width as |order|, but this only bounds by
// 2*|order|. Subtract the order if out of range.
//
// Montgomery multiplication accepts the looser bounds, so this isn't strictly
// necessary, but it is a cleaner abstraction and has no performance impact.
BN_ULONG tmp[EC_MAX_SCALAR_WORDS];
bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp,
order->width);
}
ECDSA_SIG *ECDSA_SIG_new(void) {
ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
if (sig == NULL) {
return NULL;
}
sig->r = BN_new();
sig->s = BN_new();
if (sig->r == NULL || sig->s == NULL) {
ECDSA_SIG_free(sig);
return NULL;
}
return sig;
}
void ECDSA_SIG_free(ECDSA_SIG *sig) {
if (sig == NULL) {
return;
}
BN_free(sig->r);
BN_free(sig->s);
OPENSSL_free(sig);
}
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
const BIGNUM **out_s) {
if (out_r != NULL) {
*out_r = sig->r;
}
if (out_s != NULL) {
*out_s = sig->s;
}
}
int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
if (r == NULL || s == NULL) {
return 0;
}
BN_free(sig->r);
BN_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
const ECDSA_SIG *sig, const EC_KEY *eckey) {
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
if (group == NULL || pub_key == NULL || sig == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
return 0;
}
EC_SCALAR r, s, u1, u2, s_inv_mont, m;
if (BN_is_zero(sig->r) ||
!ec_bignum_to_scalar(group, &r, sig->r) ||
BN_is_zero(sig->s) ||
!ec_bignum_to_scalar(group, &s, sig->s)) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
return 0;
}
// s_inv_mont = s^-1 in the Montgomery domain. This is
ec_scalar_inv_montgomery_vartime(group, &s_inv_mont, &s);
// u1 = m * s^-1 mod order
// u2 = r * s^-1 mod order
//
// |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
// |u2| will be taken out of Montgomery form, as desired.
digest_to_scalar(group, &m, digest, digest_len);
ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont);
ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont);
EC_RAW_POINT point;
if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
return 0;
}
if (!ec_cmp_x_coordinate(group, &point, &r)) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
return 0;
}
return 1;
}
static int ecdsa_sign_setup(const EC_KEY *eckey, EC_SCALAR *out_kinv_mont,
EC_SCALAR *out_r, const uint8_t *digest,
size_t digest_len, const EC_SCALAR *priv_key) {
// Check that the size of the group order is FIPS compliant (FIPS 186-4
// B.5.2).
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const BIGNUM *order = EC_GROUP_get0_order(group);
if (BN_num_bits(order) < 160) {
OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
return 0;
}
int ret = 0;
EC_SCALAR k;
EC_RAW_POINT tmp_point;
do {
// Include the private key and message digest in the k generation.
if (eckey->fixed_k != NULL) {
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
goto err;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
} else {
// Pass a SHA512 hash of the private key and digest as additional data
// into the RBG. This is a hardening measure against entropy failure.
OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
additional_data_is_too_large_for_sha512);
SHA512_CTX sha;
uint8_t additional_data[SHA512_DIGEST_LENGTH];
SHA512_Init(&sha);
SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
SHA512_Update(&sha, digest, digest_len);
SHA512_Final(additional_data, &sha);
if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
goto err;
}
}
// Compute k^-1 in the Montgomery domain. This is |ec_scalar_to_montgomery|
// followed by |ec_scalar_inv_montgomery|, but |ec_scalar_inv_montgomery|
// followed by |ec_scalar_from_montgomery| is equivalent and slightly more
// efficient.
ec_scalar_inv_montgomery(group, out_kinv_mont, &k);
ec_scalar_from_montgomery(group, out_kinv_mont, out_kinv_mont);
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
// Compute r, the x-coordinate of generator * k.
if (!ec_point_mul_scalar(group, &tmp_point, &k, NULL, NULL) ||
!ec_get_x_coordinate_as_scalar(group, out_r, &tmp_point)) {
goto err;
}
} while (ec_scalar_is_zero(group, out_r));
ret = 1;
err:
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
OPENSSL_cleanse(&k, sizeof(k));
return ret;
}
ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
const EC_KEY *eckey) {
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
return NULL;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if (group == NULL || eckey->priv_key == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
const BIGNUM *order = EC_GROUP_get0_order(group);
const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
int ok = 0;
ECDSA_SIG *ret = ECDSA_SIG_new();
EC_SCALAR kinv_mont, r_mont, s, m, tmp;
if (ret == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
digest_to_scalar(group, &m, digest, digest_len);
for (;;) {
if (!ecdsa_sign_setup(eckey, &kinv_mont, &r_mont, digest, digest_len,
priv_key) ||
!bn_set_words(ret->r, r_mont.words, order->width)) {
goto err;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
// Compute priv_key * r (mod order). Note if only one parameter is in the
// Montgomery domain, |ec_scalar_mod_mul_montgomery| will compute the answer
// in the normal domain.
ec_scalar_to_montgomery(group, &r_mont, &r_mont);
ec_scalar_mul_montgomery(group, &s, priv_key, &r_mont);
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
// Compute tmp = m + priv_key * r.
ec_scalar_add(group, &tmp, &m, &s);
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
// Finally, multiply s by k^-1. That was retained in Montgomery form, so the
// same technique as the previous multiplication works.
ec_scalar_mul_montgomery(group, &s, &tmp, &kinv_mont);
if (!bn_set_words(ret->s, s.words, order->width)) {
goto err;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
if (!BN_is_zero(ret->s)) {
// s != 0 => we have a valid signature
break;
}
}
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
Make ECDSA signing 10% faster and plug some timing leaks. None of the asymmetric crypto we inherented from OpenSSL is constant-time because of BIGNUM. BIGNUM chops leading zeros off the front of everything, so we end up leaking information about the first word, in theory. BIGNUM functions additionally tend to take the full range of inputs and then call into BN_nnmod at various points. All our secret values should be acted on in constant-time, but k in ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an attempt to mitigate the BIGNUM leaks, would add a couple copies of the order. This does not work at all. k is used to compute two values: k^-1 and kG. The first operation when computing k^-1 is to call BN_nnmod if k is out of range. The entry point to our tuned constant-time curve implementations is to call BN_nnmod if the scalar has too many bits, which this causes. The result is both corrections are immediately undone but cause us to do more variable-time work in the meantime. Replace all these computations around k with the word-based functions added in the various preceding CLs. In doing so, replace the BN_mod_mul calls (which internally call BN_nnmod) with Montgomery reduction. We can avoid taking k^-1 out of Montgomery form, which combines nicely with Brian Smith's trick in 3426d1011946b26ff1bb2fd98a081ba4753c9cc8. Along the way, we avoid some unnecessary mallocs. BIGNUM still affects the private key itself, as well as the EC_POINTs. But this should hopefully be much better now. Also it's 10% faster: Before: Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec) Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec) Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec) Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1 Reviewed-on: https://boringssl-review.googlesource.com/23075 Reviewed-by: Adam Langley <agl@google.com>
2017-11-13 03:58:00 +00:00
OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
OPENSSL_cleanse(&r_mont, sizeof(r_mont));
OPENSSL_cleanse(&s, sizeof(s));
OPENSSL_cleanse(&tmp, sizeof(tmp));
OPENSSL_cleanse(&m, sizeof(m));
return ret;
}