boringssl/ssl/test/runner/handshake_client.go

961 lines
27 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"encoding/asn1"
"errors"
"fmt"
"io"
"math/big"
"net"
"strconv"
)
type clientHandshakeState struct {
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
c *Conn
serverHello *serverHelloMsg
hello *clientHelloMsg
suite *cipherSuite
finishedHash finishedHash
masterSecret []byte
session *ClientSessionState
finishedBytes []byte
}
func (c *Conn) clientHandshake() error {
if c.config == nil {
c.config = defaultConfig()
}
if len(c.config.ServerName) == 0 && !c.config.InsecureSkipVerify {
return errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
}
c.sendHandshakeSeq = 0
c.recvHandshakeSeq = 0
nextProtosLength := 0
for _, proto := range c.config.NextProtos {
if l := len(proto); l == 0 || l > 255 {
return errors.New("tls: invalid NextProtos value")
} else {
nextProtosLength += 1 + l
}
}
if nextProtosLength > 0xffff {
return errors.New("tls: NextProtos values too large")
}
hello := &clientHelloMsg{
isDTLS: c.isDTLS,
vers: c.config.maxVersion(),
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
ocspStapling: true,
serverName: c.config.ServerName,
supportedCurves: c.config.curvePreferences(),
supportedPoints: []uint8{pointFormatUncompressed},
nextProtoNeg: len(c.config.NextProtos) > 0,
secureRenegotiation: []byte{},
alpnProtocols: c.config.NextProtos,
duplicateExtension: c.config.Bugs.DuplicateExtension,
channelIDSupported: c.config.ChannelID != nil,
npnLast: c.config.Bugs.SwapNPNAndALPN,
extendedMasterSecret: c.config.maxVersion() >= VersionTLS10,
srtpProtectionProfiles: c.config.SRTPProtectionProfiles,
srtpMasterKeyIdentifier: c.config.Bugs.SRTPMasterKeyIdentifer,
}
if c.config.Bugs.SendClientVersion != 0 {
hello.vers = c.config.Bugs.SendClientVersion
}
if c.config.Bugs.NoExtendedMasterSecret {
hello.extendedMasterSecret = false
}
if c.config.Bugs.NoSupportedCurves {
hello.supportedCurves = nil
}
if len(c.clientVerify) > 0 && !c.config.Bugs.EmptyRenegotiationInfo {
if c.config.Bugs.BadRenegotiationInfo {
hello.secureRenegotiation = append(hello.secureRenegotiation, c.clientVerify...)
hello.secureRenegotiation[0] ^= 0x80
} else {
hello.secureRenegotiation = c.clientVerify
}
}
if c.config.Bugs.NoRenegotiationInfo {
hello.secureRenegotiation = nil
}
possibleCipherSuites := c.config.cipherSuites()
hello.cipherSuites = make([]uint16, 0, len(possibleCipherSuites))
NextCipherSuite:
for _, suiteId := range possibleCipherSuites {
for _, suite := range cipherSuites {
if suite.id != suiteId {
continue
}
// Don't advertise TLS 1.2-only cipher suites unless
// we're attempting TLS 1.2.
if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 {
continue
}
// Don't advertise non-DTLS cipher suites on DTLS.
if c.isDTLS && suite.flags&suiteNoDTLS != 0 && !c.config.Bugs.EnableAllCiphersInDTLS {
continue
}
hello.cipherSuites = append(hello.cipherSuites, suiteId)
continue NextCipherSuite
}
}
if c.config.Bugs.SendFallbackSCSV {
hello.cipherSuites = append(hello.cipherSuites, fallbackSCSV)
}
_, err := io.ReadFull(c.config.rand(), hello.random)
if err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: short read from Rand: " + err.Error())
}
if hello.vers >= VersionTLS12 && !c.config.Bugs.NoSignatureAndHashes {
hello.signatureAndHashes = c.config.signatureAndHashesForClient()
}
var session *ClientSessionState
var cacheKey string
sessionCache := c.config.ClientSessionCache
if sessionCache != nil {
hello.ticketSupported = !c.config.SessionTicketsDisabled
// Try to resume a previously negotiated TLS session, if
// available.
cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
candidateSession, ok := sessionCache.Get(cacheKey)
if ok {
ticketOk := !c.config.SessionTicketsDisabled || candidateSession.sessionTicket == nil
// Check that the ciphersuite/version used for the
// previous session are still valid.
cipherSuiteOk := false
for _, id := range hello.cipherSuites {
if id == candidateSession.cipherSuite {
cipherSuiteOk = true
break
}
}
versOk := candidateSession.vers >= c.config.minVersion() &&
candidateSession.vers <= c.config.maxVersion()
if ticketOk && versOk && cipherSuiteOk {
session = candidateSession
}
}
}
if session != nil {
if session.sessionTicket != nil {
hello.sessionTicket = session.sessionTicket
if c.config.Bugs.CorruptTicket {
hello.sessionTicket = make([]byte, len(session.sessionTicket))
copy(hello.sessionTicket, session.sessionTicket)
if len(hello.sessionTicket) > 0 {
offset := 40
if offset > len(hello.sessionTicket) {
offset = len(hello.sessionTicket) - 1
}
hello.sessionTicket[offset] ^= 0x40
}
}
// A random session ID is used to detect when the
// server accepted the ticket and is resuming a session
// (see RFC 5077).
sessionIdLen := 16
if c.config.Bugs.OversizedSessionId {
sessionIdLen = 33
}
hello.sessionId = make([]byte, sessionIdLen)
if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: short read from Rand: " + err.Error())
}
} else {
hello.sessionId = session.sessionId
}
}
var helloBytes []byte
if c.config.Bugs.SendV2ClientHello {
// Test that the peer left-pads random.
hello.random[0] = 0
v2Hello := &v2ClientHelloMsg{
vers: hello.vers,
cipherSuites: hello.cipherSuites,
// No session resumption for V2ClientHello.
sessionId: nil,
challenge: hello.random[1:],
}
helloBytes = v2Hello.marshal()
c.writeV2Record(helloBytes)
} else {
helloBytes = hello.marshal()
c.writeRecord(recordTypeHandshake, helloBytes)
}
c.dtlsFlushHandshake()
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
if err := c.simulatePacketLoss(nil); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
if c.isDTLS {
helloVerifyRequest, ok := msg.(*helloVerifyRequestMsg)
if ok {
if helloVerifyRequest.vers != VersionTLS10 {
// Per RFC 6347, the version field in
// HelloVerifyRequest SHOULD be always DTLS
// 1.0. Enforce this for testing purposes.
return errors.New("dtls: bad HelloVerifyRequest version")
}
hello.raw = nil
hello.cookie = helloVerifyRequest.cookie
helloBytes = hello.marshal()
c.writeRecord(recordTypeHandshake, helloBytes)
c.dtlsFlushHandshake()
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
if err := c.simulatePacketLoss(nil); err != nil {
return err
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
}
serverHello, ok := msg.(*serverHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverHello, msg)
}
c.vers, ok = c.config.mutualVersion(serverHello.vers)
if !ok {
c.sendAlert(alertProtocolVersion)
return fmt.Errorf("tls: server selected unsupported protocol version %x", serverHello.vers)
}
c.haveVers = true
suite := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite)
if suite == nil {
c.sendAlert(alertHandshakeFailure)
return fmt.Errorf("tls: server selected an unsupported cipher suite")
}
if len(c.clientVerify) > 0 && !c.config.Bugs.NoRenegotiationInfo {
var expectedRenegInfo []byte
expectedRenegInfo = append(expectedRenegInfo, c.clientVerify...)
expectedRenegInfo = append(expectedRenegInfo, c.serverVerify...)
if !bytes.Equal(serverHello.secureRenegotiation, expectedRenegInfo) {
c.sendAlert(alertHandshakeFailure)
return fmt.Errorf("tls: renegotiation mismatch")
}
}
hs := &clientHandshakeState{
c: c,
serverHello: serverHello,
hello: hello,
suite: suite,
finishedHash: newFinishedHash(c.vers, suite),
session: session,
}
hs.writeHash(helloBytes, hs.c.sendHandshakeSeq-1)
hs.writeServerHash(hs.serverHello.marshal())
if c.config.Bugs.EarlyChangeCipherSpec > 0 {
hs.establishKeys()
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
}
isResume, err := hs.processServerHello()
if err != nil {
return err
}
if isResume {
if c.config.Bugs.EarlyChangeCipherSpec == 0 {
if err := hs.establishKeys(); err != nil {
return err
}
}
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(c.firstFinished[:]); err != nil {
return err
}
if err := hs.sendFinished(nil, isResume); err != nil {
return err
}
} else {
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.sendFinished(c.firstFinished[:], isResume); err != nil {
return err
}
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
// Most retransmits are triggered by a timeout, but the final
// leg of the handshake is retransmited upon re-receiving a
// Finished.
if err := c.simulatePacketLoss(func() {
c.writeRecord(recordTypeHandshake, hs.finishedBytes)
c.dtlsFlushHandshake()
}); err != nil {
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
return err
}
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(nil); err != nil {
return err
}
}
if sessionCache != nil && hs.session != nil && session != hs.session {
sessionCache.Put(cacheKey, hs.session)
}
c.didResume = isResume
c.handshakeComplete = true
c.cipherSuite = suite
copy(c.clientRandom[:], hs.hello.random)
copy(c.serverRandom[:], hs.serverHello.random)
copy(c.masterSecret[:], hs.masterSecret)
return nil
}
func (hs *clientHandshakeState) doFullHandshake() error {
c := hs.c
var leaf *x509.Certificate
if hs.suite.flags&suitePSK == 0 {
msg, err := c.readHandshake()
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsg)
if !ok || len(certMsg.certificates) == 0 {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
hs.writeServerHash(certMsg.marshal())
certs := make([]*x509.Certificate, len(certMsg.certificates))
for i, asn1Data := range certMsg.certificates {
cert, err := x509.ParseCertificate(asn1Data)
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to parse certificate from server: " + err.Error())
}
certs[i] = cert
}
leaf = certs[0]
if !c.config.InsecureSkipVerify {
opts := x509.VerifyOptions{
Roots: c.config.RootCAs,
CurrentTime: c.config.time(),
DNSName: c.config.ServerName,
Intermediates: x509.NewCertPool(),
}
for i, cert := range certs {
if i == 0 {
continue
}
opts.Intermediates.AddCert(cert)
}
c.verifiedChains, err = leaf.Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
switch leaf.PublicKey.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey:
break
default:
c.sendAlert(alertUnsupportedCertificate)
return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", leaf.PublicKey)
}
c.peerCertificates = certs
}
if hs.serverHello.ocspStapling {
msg, err := c.readHandshake()
if err != nil {
return err
}
cs, ok := msg.(*certificateStatusMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(cs, msg)
}
hs.writeServerHash(cs.marshal())
if cs.statusType == statusTypeOCSP {
c.ocspResponse = cs.response
}
}
msg, err := c.readHandshake()
if err != nil {
return err
}
keyAgreement := hs.suite.ka(c.vers)
skx, ok := msg.(*serverKeyExchangeMsg)
if ok {
hs.writeServerHash(skx.marshal())
err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, leaf, skx)
if err != nil {
c.sendAlert(alertUnexpectedMessage)
return err
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
var chainToSend *Certificate
var certRequested bool
certReq, ok := msg.(*certificateRequestMsg)
if ok {
certRequested = true
// RFC 4346 on the certificateAuthorities field:
// A list of the distinguished names of acceptable certificate
// authorities. These distinguished names may specify a desired
// distinguished name for a root CA or for a subordinate CA;
// thus, this message can be used to describe both known roots
// and a desired authorization space. If the
// certificate_authorities list is empty then the client MAY
// send any certificate of the appropriate
// ClientCertificateType, unless there is some external
// arrangement to the contrary.
hs.writeServerHash(certReq.marshal())
var rsaAvail, ecdsaAvail bool
for _, certType := range certReq.certificateTypes {
switch certType {
case CertTypeRSASign:
rsaAvail = true
case CertTypeECDSASign:
ecdsaAvail = true
}
}
// We need to search our list of client certs for one
// where SignatureAlgorithm is RSA and the Issuer is in
// certReq.certificateAuthorities
findCert:
for i, chain := range c.config.Certificates {
if !rsaAvail && !ecdsaAvail {
continue
}
for j, cert := range chain.Certificate {
x509Cert := chain.Leaf
// parse the certificate if this isn't the leaf
// node, or if chain.Leaf was nil
if j != 0 || x509Cert == nil {
if x509Cert, err = x509.ParseCertificate(cert); err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: failed to parse client certificate #" + strconv.Itoa(i) + ": " + err.Error())
}
}
switch {
case rsaAvail && x509Cert.PublicKeyAlgorithm == x509.RSA:
case ecdsaAvail && x509Cert.PublicKeyAlgorithm == x509.ECDSA:
default:
continue findCert
}
if len(certReq.certificateAuthorities) == 0 {
// they gave us an empty list, so just take the
// first RSA cert from c.config.Certificates
chainToSend = &chain
break findCert
}
for _, ca := range certReq.certificateAuthorities {
if bytes.Equal(x509Cert.RawIssuer, ca) {
chainToSend = &chain
break findCert
}
}
}
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
shd, ok := msg.(*serverHelloDoneMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(shd, msg)
}
hs.writeServerHash(shd.marshal())
// If the server requested a certificate then we have to send a
// Certificate message, even if it's empty because we don't have a
// certificate to send.
if certRequested {
certMsg := new(certificateMsg)
if chainToSend != nil {
certMsg.certificates = chainToSend.Certificate
}
hs.writeClientHash(certMsg.marshal())
c.writeRecord(recordTypeHandshake, certMsg.marshal())
}
preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, leaf)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if ckx != nil {
if c.config.Bugs.EarlyChangeCipherSpec < 2 {
hs.writeClientHash(ckx.marshal())
}
c.writeRecord(recordTypeHandshake, ckx.marshal())
}
if hs.serverHello.extendedMasterSecret && c.vers >= VersionTLS10 {
hs.masterSecret = extendedMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash)
c.extendedMasterSecret = true
} else {
if c.config.Bugs.RequireExtendedMasterSecret {
return errors.New("tls: extended master secret required but not supported by peer")
}
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random)
}
if chainToSend != nil {
var signed []byte
certVerify := &certificateVerifyMsg{
hasSignatureAndHash: c.vers >= VersionTLS12,
}
// Determine the hash to sign.
var signatureType uint8
switch c.config.Certificates[0].PrivateKey.(type) {
case *ecdsa.PrivateKey:
signatureType = signatureECDSA
case *rsa.PrivateKey:
signatureType = signatureRSA
default:
c.sendAlert(alertInternalError)
return errors.New("unknown private key type")
}
if c.config.Bugs.IgnorePeerSignatureAlgorithmPreferences {
certReq.signatureAndHashes = c.config.signatureAndHashesForClient()
}
certVerify.signatureAndHash, err = hs.finishedHash.selectClientCertSignatureAlgorithm(certReq.signatureAndHashes, c.config.signatureAndHashesForClient(), signatureType)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
digest, hashFunc, err := hs.finishedHash.hashForClientCertificate(certVerify.signatureAndHash, hs.masterSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
switch key := c.config.Certificates[0].PrivateKey.(type) {
case *ecdsa.PrivateKey:
var r, s *big.Int
r, s, err = ecdsa.Sign(c.config.rand(), key, digest)
if err == nil {
signed, err = asn1.Marshal(ecdsaSignature{r, s})
}
case *rsa.PrivateKey:
signed, err = rsa.SignPKCS1v15(c.config.rand(), key, hashFunc, digest)
default:
err = errors.New("unknown private key type")
}
if err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: failed to sign handshake with client certificate: " + err.Error())
}
certVerify.signature = signed
hs.writeClientHash(certVerify.marshal())
c.writeRecord(recordTypeHandshake, certVerify.marshal())
}
c.dtlsFlushHandshake()
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *clientHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher interface{}
var clientHash, serverHash macFunction
if hs.suite.cipher != nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */)
clientHash = hs.suite.mac(c.vers, clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */)
serverHash = hs.suite.mac(c.vers, serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, serverCipher, serverHash)
c.out.prepareCipherSpec(c.vers, clientCipher, clientHash)
return nil
}
func (hs *clientHandshakeState) serverResumedSession() bool {
// If the server responded with the same sessionId then it means the
// sessionTicket is being used to resume a TLS session.
return hs.session != nil && hs.hello.sessionId != nil &&
bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId)
}
func (hs *clientHandshakeState) processServerHello() (bool, error) {
c := hs.c
if hs.serverHello.compressionMethod != compressionNone {
c.sendAlert(alertUnexpectedMessage)
return false, errors.New("tls: server selected unsupported compression format")
}
clientDidNPN := hs.hello.nextProtoNeg
clientDidALPN := len(hs.hello.alpnProtocols) > 0
serverHasNPN := hs.serverHello.nextProtoNeg
serverHasALPN := len(hs.serverHello.alpnProtocol) > 0
if !clientDidNPN && serverHasNPN {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("server advertised unrequested NPN extension")
}
if !clientDidALPN && serverHasALPN {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("server advertised unrequested ALPN extension")
}
if serverHasNPN && serverHasALPN {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("server advertised both NPN and ALPN extensions")
}
if serverHasALPN {
c.clientProtocol = hs.serverHello.alpnProtocol
c.clientProtocolFallback = false
c.usedALPN = true
}
if !hs.hello.channelIDSupported && hs.serverHello.channelIDRequested {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("server advertised unrequested Channel ID extension")
}
if hs.serverHello.srtpProtectionProfile != 0 {
if hs.serverHello.srtpMasterKeyIdentifier != "" {
return false, errors.New("tls: server selected SRTP MKI value")
}
found := false
for _, p := range c.config.SRTPProtectionProfiles {
if p == hs.serverHello.srtpProtectionProfile {
found = true
break
}
}
if !found {
return false, errors.New("tls: server advertised unsupported SRTP profile")
}
c.srtpProtectionProfile = hs.serverHello.srtpProtectionProfile
}
if hs.serverResumedSession() {
// For test purposes, assert that the server never accepts the
// resumption offer on renegotiation.
if c.cipherSuite != nil && c.config.Bugs.FailIfResumeOnRenego {
return false, errors.New("tls: server resumed session on renegotiation")
}
// Restore masterSecret and peerCerts from previous state
hs.masterSecret = hs.session.masterSecret
c.peerCertificates = hs.session.serverCertificates
c.extendedMasterSecret = hs.session.extendedMasterSecret
hs.finishedHash.discardHandshakeBuffer()
return true, nil
}
return false, nil
}
func (hs *clientHandshakeState) readFinished(out []byte) error {
c := hs.c
c.readRecord(recordTypeChangeCipherSpec)
if err := c.in.error(); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
serverFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverFinished, msg)
}
if c.config.Bugs.EarlyChangeCipherSpec == 0 {
verify := hs.finishedHash.serverSum(hs.masterSecret)
if len(verify) != len(serverFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server's Finished message was incorrect")
}
}
c.serverVerify = append(c.serverVerify[:0], serverFinished.verifyData...)
copy(out, serverFinished.verifyData)
hs.writeServerHash(serverFinished.marshal())
return nil
}
func (hs *clientHandshakeState) readSessionTicket() error {
c := hs.c
// Create a session with no server identifier. Either a
// session ID or session ticket will be attached.
session := &ClientSessionState{
vers: c.vers,
cipherSuite: hs.suite.id,
masterSecret: hs.masterSecret,
handshakeHash: hs.finishedHash.server.Sum(nil),
serverCertificates: c.peerCertificates,
}
if !hs.serverHello.ticketSupported {
if hs.session == nil && len(hs.serverHello.sessionId) > 0 {
session.sessionId = hs.serverHello.sessionId
hs.session = session
}
return nil
}
msg, err := c.readHandshake()
if err != nil {
return err
}
sessionTicketMsg, ok := msg.(*newSessionTicketMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(sessionTicketMsg, msg)
}
session.sessionTicket = sessionTicketMsg.ticket
hs.session = session
hs.writeServerHash(sessionTicketMsg.marshal())
return nil
}
func (hs *clientHandshakeState) sendFinished(out []byte, isResume bool) error {
c := hs.c
var postCCSBytes []byte
seqno := hs.c.sendHandshakeSeq
if hs.serverHello.nextProtoNeg {
nextProto := new(nextProtoMsg)
proto, fallback := mutualProtocol(c.config.NextProtos, hs.serverHello.nextProtos)
nextProto.proto = proto
c.clientProtocol = proto
c.clientProtocolFallback = fallback
nextProtoBytes := nextProto.marshal()
hs.writeHash(nextProtoBytes, seqno)
seqno++
postCCSBytes = append(postCCSBytes, nextProtoBytes...)
}
if hs.serverHello.channelIDRequested {
encryptedExtensions := new(encryptedExtensionsMsg)
if c.config.ChannelID.Curve != elliptic.P256() {
return fmt.Errorf("tls: Channel ID is not on P-256.")
}
var resumeHash []byte
if isResume {
resumeHash = hs.session.handshakeHash
}
r, s, err := ecdsa.Sign(c.config.rand(), c.config.ChannelID, hs.finishedHash.hashForChannelID(resumeHash))
if err != nil {
return err
}
channelID := make([]byte, 128)
writeIntPadded(channelID[0:32], c.config.ChannelID.X)
writeIntPadded(channelID[32:64], c.config.ChannelID.Y)
writeIntPadded(channelID[64:96], r)
writeIntPadded(channelID[96:128], s)
encryptedExtensions.channelID = channelID
c.channelID = &c.config.ChannelID.PublicKey
encryptedExtensionsBytes := encryptedExtensions.marshal()
hs.writeHash(encryptedExtensionsBytes, seqno)
seqno++
postCCSBytes = append(postCCSBytes, encryptedExtensionsBytes...)
}
finished := new(finishedMsg)
if c.config.Bugs.EarlyChangeCipherSpec == 2 {
finished.verifyData = hs.finishedHash.clientSum(nil)
} else {
finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret)
}
copy(out, finished.verifyData)
if c.config.Bugs.BadFinished {
finished.verifyData[0]++
}
c.clientVerify = append(c.clientVerify[:0], finished.verifyData...)
Add DTLS timeout and retransmit tests. This extends the packet adaptor protocol to send three commands: type command = | Packet of []byte | Timeout of time.Duration | TimeoutAck When the shim processes a Timeout in BIO_read, it sends TimeoutAck, fails the BIO_read, returns out of the SSL stack, advances the clock, calls DTLSv1_handle_timeout, and continues. If the Go side sends Timeout right between sending handshake flight N and reading flight N+1, the shim won't read the Timeout until it has sent flight N+1 (it only processes packet commands in BIO_read), so the TimeoutAck comes after N+1. Go then drops all packets before the TimeoutAck, thus dropping one transmit of flight N+1 without having to actually process the packets to determine the end of the flight. The shim then sees the updated clock, calls DTLSv1_handle_timeout, and re-sends flight N+1 for Go to process for real. When dropping packets, Go checks the epoch and increments sequence numbers so that we can continue to be strict here. This requires tracking the initial sequence number of the next epoch. The final Finished message takes an additional special-case to test. DTLS triggers retransmits on either a timeout or seeing a stale flight. OpenSSL only implements the former which should be sufficient (and is necessary) EXCEPT for the final Finished message. If the peer's final Finished message is lost, it won't be waiting for a message from us, so it won't time out anything. That retransmit must be triggered on stale message, so we retransmit the Finished message in Go. Change-Id: I3ffbdb1de525beb2ee831b304670a3387877634c Reviewed-on: https://boringssl-review.googlesource.com/3212 Reviewed-by: Adam Langley <agl@google.com>
2015-01-27 06:09:43 +00:00
hs.finishedBytes = finished.marshal()
hs.writeHash(hs.finishedBytes, seqno)
postCCSBytes = append(postCCSBytes, hs.finishedBytes...)
if c.config.Bugs.FragmentAcrossChangeCipherSpec {
c.writeRecord(recordTypeHandshake, postCCSBytes[:5])
postCCSBytes = postCCSBytes[5:]
}
c.dtlsFlushHandshake()
if !c.config.Bugs.SkipChangeCipherSpec &&
c.config.Bugs.EarlyChangeCipherSpec == 0 {
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
}
if c.config.Bugs.AppDataAfterChangeCipherSpec != nil {
c.writeRecord(recordTypeApplicationData, c.config.Bugs.AppDataAfterChangeCipherSpec)
}
if c.config.Bugs.AlertAfterChangeCipherSpec != 0 {
c.sendAlert(c.config.Bugs.AlertAfterChangeCipherSpec)
return errors.New("tls: simulating post-CCS alert")
}
if !c.config.Bugs.SkipFinished {
c.writeRecord(recordTypeHandshake, postCCSBytes)
c.dtlsFlushHandshake()
}
return nil
}
func (hs *clientHandshakeState) writeClientHash(msg []byte) {
// writeClientHash is called before writeRecord.
hs.writeHash(msg, hs.c.sendHandshakeSeq)
}
func (hs *clientHandshakeState) writeServerHash(msg []byte) {
// writeServerHash is called after readHandshake.
hs.writeHash(msg, hs.c.recvHandshakeSeq-1)
}
func (hs *clientHandshakeState) writeHash(msg []byte, seqno uint16) {
if hs.c.isDTLS {
// This is somewhat hacky. DTLS hashes a slightly different format.
// First, the TLS header.
hs.finishedHash.Write(msg[:4])
// Then the sequence number and reassembled fragment offset (always 0).
hs.finishedHash.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0})
// Then the reassembled fragment (always equal to the message length).
hs.finishedHash.Write(msg[1:4])
// And then the message body.
hs.finishedHash.Write(msg[4:])
} else {
hs.finishedHash.Write(msg)
}
}
// clientSessionCacheKey returns a key used to cache sessionTickets that could
// be used to resume previously negotiated TLS sessions with a server.
func clientSessionCacheKey(serverAddr net.Addr, config *Config) string {
if len(config.ServerName) > 0 {
return config.ServerName
}
return serverAddr.String()
}
// mutualProtocol finds the mutual Next Protocol Negotiation or ALPN protocol
// given list of possible protocols and a list of the preference order. The
// first list must not be empty. It returns the resulting protocol and flag
// indicating if the fallback case was reached.
func mutualProtocol(protos, preferenceProtos []string) (string, bool) {
for _, s := range preferenceProtos {
for _, c := range protos {
if s == c {
return s, false
}
}
}
return protos[0], true
}
// writeIntPadded writes x into b, padded up with leading zeros as
// needed.
func writeIntPadded(b []byte, x *big.Int) {
for i := range b {
b[i] = 0
}
xb := x.Bytes()
copy(b[len(b)-len(xb):], xb)
}