2014-06-20 20:00:00 +01:00
|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.]
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
|
|
* ECC cipher suite support in OpenSSL originally developed by
|
|
|
|
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
|
|
|
|
|
2015-09-04 20:05:05 +01:00
|
|
|
#include <openssl/ssl.h>
|
|
|
|
|
2016-07-15 12:07:40 +01:00
|
|
|
#include <assert.h>
|
2016-11-01 17:39:36 +00:00
|
|
|
#include <limits.h>
|
2015-04-08 04:05:04 +01:00
|
|
|
#include <string.h>
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
#include <utility>
|
|
|
|
|
2014-06-20 20:00:00 +01:00
|
|
|
#include <openssl/bn.h>
|
2014-07-08 19:34:10 +01:00
|
|
|
#include <openssl/buf.h>
|
2016-12-12 19:37:43 +00:00
|
|
|
#include <openssl/bytestring.h>
|
|
|
|
#include <openssl/ec_key.h>
|
2014-06-20 20:00:00 +01:00
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/mem.h>
|
2016-07-14 04:03:26 +01:00
|
|
|
#include <openssl/sha.h>
|
2015-06-18 17:37:23 +01:00
|
|
|
#include <openssl/x509.h>
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2015-05-15 20:49:30 +01:00
|
|
|
#include "../crypto/internal.h"
|
2015-04-08 03:38:30 +01:00
|
|
|
#include "internal.h"
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2014-12-19 01:42:32 +00:00
|
|
|
|
Support symbol prefixes
- In base.h, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols.h
- In all .S files, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols_asm.h
- In base.h, BSSL_NAMESPACE_BEGIN and BSSL_NAMESPACE_END are
defined with appropriate values depending on whether
BORINGSSL_PREFIX is defined; these macros are used in place
of 'namespace bssl {' and '}'
- Add util/make_prefix_headers.go, which takes a list of symbols
and auto-generates the header files mentioned above
- In CMakeLists.txt, if BORINGSSL_PREFIX and BORINGSSL_PREFIX_SYMBOLS
are defined, run util/make_prefix_headers.go to generate header
files
- In various CMakeLists.txt files, add "global_target" that all
targets depend on to give us a place to hook logic that must run
before all other targets (in particular, the header file generation
logic)
- Document this in BUILDING.md, including the fact that it is
the caller's responsibility to provide the symbol list and keep it
up to date
- Note that this scheme has not been tested on Windows, and likely
does not work on it; Windows support will need to be added in a
future commit
Change-Id: If66a7157f46b5b66230ef91e15826b910cf979a2
Reviewed-on: https://boringssl-review.googlesource.com/31364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
2018-08-27 02:53:36 +01:00
|
|
|
BSSL_NAMESPACE_BEGIN
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
CERT::CERT(const SSL_X509_METHOD *x509_method_arg)
|
2018-04-13 23:51:30 +01:00
|
|
|
: x509_method(x509_method_arg) {}
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
CERT::~CERT() {
|
|
|
|
ssl_cert_clear_certs(this);
|
|
|
|
x509_method->cert_free(this);
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-01-24 21:59:42 +00:00
|
|
|
static CRYPTO_BUFFER *buffer_up_ref(CRYPTO_BUFFER *buffer) {
|
|
|
|
CRYPTO_BUFFER_up_ref(buffer);
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
UniquePtr<CERT> ssl_cert_dup(CERT *cert) {
|
|
|
|
UniquePtr<CERT> ret = MakeUnique<CERT>(cert->x509_method);
|
|
|
|
if (!ret) {
|
|
|
|
return nullptr;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
if (cert->chain) {
|
|
|
|
ret->chain.reset(sk_CRYPTO_BUFFER_deep_copy(
|
|
|
|
cert->chain.get(), buffer_up_ref, CRYPTO_BUFFER_free));
|
|
|
|
if (!ret->chain) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2018-06-29 22:46:42 +01:00
|
|
|
ret->privatekey = UpRef(cert->privatekey);
|
2016-03-06 09:38:38 +00:00
|
|
|
ret->key_method = cert->key_method;
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
if (!ret->sigalgs.CopyFrom(cert->sigalgs)) {
|
|
|
|
return nullptr;
|
2016-08-17 20:29:46 +01:00
|
|
|
}
|
|
|
|
|
2014-12-19 01:42:32 +00:00
|
|
|
ret->cert_cb = cert->cert_cb;
|
|
|
|
ret->cert_cb_arg = cert->cert_cb_arg;
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
ret->x509_method->cert_dup(ret.get(), cert);
|
2016-03-01 23:58:14 +00:00
|
|
|
|
2018-06-29 22:46:42 +01:00
|
|
|
ret->signed_cert_timestamp_list = UpRef(cert->signed_cert_timestamp_list);
|
|
|
|
ret->ocsp_response = UpRef(cert->ocsp_response);
|
2017-02-14 23:34:54 +00:00
|
|
|
|
2017-02-15 01:07:11 +00:00
|
|
|
ret->sid_ctx_length = cert->sid_ctx_length;
|
|
|
|
OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx));
|
|
|
|
|
2014-12-19 01:42:32 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2014-06-20 20:00:00 +01:00
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Free up and clear all certificates and chains
|
2015-07-05 16:54:09 +01:00
|
|
|
void ssl_cert_clear_certs(CERT *cert) {
|
|
|
|
if (cert == NULL) {
|
2014-12-19 01:42:32 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-02-01 19:59:18 +00:00
|
|
|
cert->x509_method->cert_clear(cert);
|
2017-01-31 23:24:31 +00:00
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
cert->chain.reset();
|
|
|
|
cert->privatekey.reset();
|
|
|
|
cert->key_method = nullptr;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-08-01 00:09:42 +01:00
|
|
|
static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg),
|
2016-12-04 04:29:05 +00:00
|
|
|
void *arg) {
|
2017-08-01 00:09:42 +01:00
|
|
|
cert->cert_cb = cb;
|
|
|
|
cert->cert_cb_arg = arg;
|
2014-12-19 01:42:32 +00:00
|
|
|
}
|
|
|
|
|
2017-02-28 19:26:51 +00:00
|
|
|
enum leaf_cert_and_privkey_result_t {
|
|
|
|
leaf_cert_and_privkey_error,
|
|
|
|
leaf_cert_and_privkey_ok,
|
|
|
|
leaf_cert_and_privkey_mismatch,
|
|
|
|
};
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer|
|
|
|
|
// and the private key in |privkey| are suitable and coherent. It returns
|
|
|
|
// |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is
|
|
|
|
// found. If the certificate and private key are valid, but incoherent, it
|
|
|
|
// returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns
|
|
|
|
// |leaf_cert_and_privkey_ok|.
|
2017-02-28 19:26:51 +00:00
|
|
|
static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey(
|
|
|
|
CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) {
|
2017-02-01 20:40:31 +00:00
|
|
|
CBS cert_cbs;
|
2017-02-28 19:26:51 +00:00
|
|
|
CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs);
|
2017-07-20 19:49:15 +01:00
|
|
|
UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
|
|
|
|
if (!pubkey) {
|
2017-02-28 19:26:51 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
|
2017-07-20 19:49:15 +01:00
|
|
|
return leaf_cert_and_privkey_error;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!ssl_is_key_type_supported(pubkey->type)) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
|
2017-07-20 19:49:15 +01:00
|
|
|
return leaf_cert_and_privkey_error;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA
|
|
|
|
// certificates, so sanity-check the key usage extension.
|
2017-02-01 20:40:31 +00:00
|
|
|
if (pubkey->type == EVP_PKEY_EC &&
|
|
|
|
!ssl_cert_check_digital_signature_key_usage(&cert_cbs)) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
|
2017-07-20 19:49:15 +01:00
|
|
|
return leaf_cert_and_privkey_error;
|
2017-02-28 19:26:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (privkey != NULL &&
|
2017-08-29 21:33:21 +01:00
|
|
|
// Sanity-check that the private key and the certificate match.
|
2017-07-20 19:49:15 +01:00
|
|
|
!ssl_compare_public_and_private_key(pubkey.get(), privkey)) {
|
2017-02-28 19:26:51 +00:00
|
|
|
ERR_clear_error();
|
2017-07-20 19:49:15 +01:00
|
|
|
return leaf_cert_and_privkey_mismatch;
|
2017-02-28 19:26:51 +00:00
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
return leaf_cert_and_privkey_ok;
|
2017-02-28 19:26:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int cert_set_chain_and_key(
|
|
|
|
CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs,
|
|
|
|
EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) {
|
|
|
|
if (num_certs == 0 ||
|
|
|
|
(privkey == NULL && privkey_method == NULL)) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
|
2017-02-01 20:40:31 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-02-28 19:26:51 +00:00
|
|
|
if (privkey != NULL && privkey_method != NULL) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (check_leaf_cert_and_privkey(certs[0], privkey)) {
|
|
|
|
case leaf_cert_and_privkey_error:
|
|
|
|
return 0;
|
|
|
|
case leaf_cert_and_privkey_mismatch:
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
|
|
|
|
return 0;
|
|
|
|
case leaf_cert_and_privkey_ok:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs_sk(sk_CRYPTO_BUFFER_new_null());
|
|
|
|
if (!certs_sk) {
|
2017-02-28 19:26:51 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < num_certs; i++) {
|
2018-06-29 22:46:42 +01:00
|
|
|
if (!PushToStack(certs_sk.get(), UpRef(certs[i]))) {
|
2017-02-28 19:26:51 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-06-29 22:46:42 +01:00
|
|
|
cert->privatekey = UpRef(privkey);
|
2017-02-28 19:26:51 +00:00
|
|
|
cert->key_method = privkey_method;
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
cert->chain = std::move(certs_sk);
|
2017-02-28 19:26:51 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer) {
|
2018-04-12 21:11:15 +01:00
|
|
|
switch (check_leaf_cert_and_privkey(buffer.get(), cert->privatekey.get())) {
|
2017-02-28 19:26:51 +00:00
|
|
|
case leaf_cert_and_privkey_error:
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-02-28 19:26:51 +00:00
|
|
|
case leaf_cert_and_privkey_mismatch:
|
2017-08-29 21:33:21 +01:00
|
|
|
// don't fail for a cert/key mismatch, just free current private key
|
|
|
|
// (when switching to a different cert & key, first this function should
|
|
|
|
// be used, then |ssl_set_pkey|.
|
2018-04-12 21:11:15 +01:00
|
|
|
cert->privatekey.reset();
|
2017-02-28 19:26:51 +00:00
|
|
|
break;
|
|
|
|
case leaf_cert_and_privkey_ok:
|
|
|
|
break;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
cert->x509_method->cert_flush_cached_leaf(cert);
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
if (cert->chain != nullptr) {
|
|
|
|
CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0));
|
|
|
|
sk_CRYPTO_BUFFER_set(cert->chain.get(), 0, buffer.release());
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
cert->chain.reset(sk_CRYPTO_BUFFER_new_null());
|
|
|
|
if (cert->chain == nullptr) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
if (!PushToStack(cert->chain.get(), std::move(buffer))) {
|
|
|
|
cert->chain.reset();
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2017-02-01 20:40:31 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_has_certificate(const SSL_CONFIG *cfg) {
|
2018-04-13 23:51:30 +01:00
|
|
|
return cfg->cert->chain != nullptr &&
|
|
|
|
sk_CRYPTO_BUFFER_value(cfg->cert->chain.get(), 0) != nullptr &&
|
|
|
|
ssl_has_private_key(cfg);
|
2016-07-14 03:03:11 +01:00
|
|
|
}
|
|
|
|
|
2017-07-21 01:19:36 +01:00
|
|
|
bool ssl_parse_cert_chain(uint8_t *out_alert,
|
|
|
|
UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
|
|
|
|
UniquePtr<EVP_PKEY> *out_pubkey,
|
|
|
|
uint8_t *out_leaf_sha256, CBS *cbs,
|
|
|
|
CRYPTO_BUFFER_POOL *pool) {
|
|
|
|
out_chain->reset();
|
|
|
|
out_pubkey->reset();
|
2016-07-14 04:03:26 +01:00
|
|
|
|
|
|
|
CBS certificate_list;
|
|
|
|
if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) {
|
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
|
2017-07-21 01:19:36 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CBS_len(&certificate_list) == 0) {
|
|
|
|
return true;
|
2016-07-14 04:03:26 +01:00
|
|
|
}
|
|
|
|
|
2017-07-21 01:19:36 +01:00
|
|
|
UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null());
|
|
|
|
if (!chain) {
|
|
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
UniquePtr<EVP_PKEY> pubkey;
|
2016-07-14 04:03:26 +01:00
|
|
|
while (CBS_len(&certificate_list) > 0) {
|
|
|
|
CBS certificate;
|
2016-12-12 19:06:16 +00:00
|
|
|
if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) ||
|
|
|
|
CBS_len(&certificate) == 0) {
|
2016-07-14 04:03:26 +01:00
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
|
2017-07-21 01:19:36 +01:00
|
|
|
return false;
|
2016-07-14 04:03:26 +01:00
|
|
|
}
|
|
|
|
|
2017-07-21 01:19:36 +01:00
|
|
|
if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) {
|
2017-07-20 19:49:15 +01:00
|
|
|
pubkey = ssl_cert_parse_pubkey(&certificate);
|
|
|
|
if (!pubkey) {
|
2017-02-08 16:51:25 +00:00
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
2017-07-21 01:19:36 +01:00
|
|
|
return false;
|
2016-12-12 19:37:43 +00:00
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Retain the hash of the leaf certificate if requested.
|
2016-12-12 19:37:43 +00:00
|
|
|
if (out_leaf_sha256 != NULL) {
|
|
|
|
SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256);
|
|
|
|
}
|
2016-07-14 04:03:26 +01:00
|
|
|
}
|
|
|
|
|
2017-07-26 03:36:00 +01:00
|
|
|
UniquePtr<CRYPTO_BUFFER> buf(
|
|
|
|
CRYPTO_BUFFER_new_from_CBS(&certificate, pool));
|
|
|
|
if (!buf ||
|
|
|
|
!PushToStack(chain.get(), std::move(buf))) {
|
2016-07-14 04:03:26 +01:00
|
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
2017-07-21 01:19:36 +01:00
|
|
|
return false;
|
2016-07-14 04:03:26 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-07-21 01:19:36 +01:00
|
|
|
*out_chain = std::move(chain);
|
2017-07-20 19:49:15 +01:00
|
|
|
*out_pubkey = std::move(pubkey);
|
2017-07-21 01:19:36 +01:00
|
|
|
return true;
|
2016-07-14 04:03:26 +01:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl_has_certificate(hs->config)) {
|
2016-07-14 03:03:11 +01:00
|
|
|
return CBB_add_u24(cbb, 0);
|
|
|
|
}
|
|
|
|
|
2017-01-24 21:59:42 +00:00
|
|
|
CBB certs;
|
|
|
|
if (!CBB_add_u24_length_prefixed(cbb, &certs)) {
|
2017-07-12 21:31:08 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-06-17 23:48:29 +01:00
|
|
|
}
|
|
|
|
|
2018-04-13 23:51:30 +01:00
|
|
|
STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert->chain.get();
|
2017-01-24 21:59:42 +00:00
|
|
|
for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) {
|
|
|
|
CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i);
|
|
|
|
CBB child;
|
|
|
|
if (!CBB_add_u24_length_prefixed(&certs, &child) ||
|
|
|
|
!CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer),
|
|
|
|
CRYPTO_BUFFER_len(buffer)) ||
|
|
|
|
!CBB_flush(&certs)) {
|
2017-07-12 21:31:08 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2015-05-03 20:14:04 +01:00
|
|
|
}
|
2016-12-20 23:55:16 +00:00
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2016-12-20 23:55:16 +00:00
|
|
|
return CBB_flush(cbb);
|
|
|
|
}
|
2014-12-19 01:42:32 +00:00
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and
|
|
|
|
// positions |*out_tbs_cert| to cover the TBSCertificate, starting at the
|
|
|
|
// subjectPublicKeyInfo.
|
2018-09-06 00:44:15 +01:00
|
|
|
static bool ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) {
|
2016-12-12 19:37:43 +00:00
|
|
|
/* From RFC 5280, section 4.1
|
|
|
|
* Certificate ::= SEQUENCE {
|
|
|
|
* tbsCertificate TBSCertificate,
|
|
|
|
* signatureAlgorithm AlgorithmIdentifier,
|
|
|
|
* signatureValue BIT STRING }
|
|
|
|
|
|
|
|
* TBSCertificate ::= SEQUENCE {
|
|
|
|
* version [0] EXPLICIT Version DEFAULT v1,
|
|
|
|
* serialNumber CertificateSerialNumber,
|
|
|
|
* signature AlgorithmIdentifier,
|
|
|
|
* issuer Name,
|
|
|
|
* validity Validity,
|
|
|
|
* subject Name,
|
|
|
|
* subjectPublicKeyInfo SubjectPublicKeyInfo,
|
|
|
|
* ... } */
|
|
|
|
CBS buf = *in;
|
|
|
|
|
2016-12-13 20:05:49 +00:00
|
|
|
CBS toplevel;
|
2016-12-12 19:37:43 +00:00
|
|
|
if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) ||
|
|
|
|
CBS_len(&buf) != 0 ||
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// version
|
2016-12-12 19:37:43 +00:00
|
|
|
!CBS_get_optional_asn1(
|
2016-12-13 20:05:49 +00:00
|
|
|
out_tbs_cert, NULL, NULL,
|
2016-12-12 19:37:43 +00:00
|
|
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// serialNumber
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// signature algorithm
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// issuer
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// validity
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// subject
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in) {
|
2017-01-03 13:08:57 +00:00
|
|
|
CBS buf = *in, tbs_cert;
|
|
|
|
if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) {
|
2016-12-12 19:37:43 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2016-12-12 19:37:43 +00:00
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
return UniquePtr<EVP_PKEY>(EVP_parse_public_key(&tbs_cert));
|
2016-12-12 19:37:43 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
|
|
|
|
const EVP_PKEY *privkey) {
|
2017-02-28 19:26:51 +00:00
|
|
|
if (EVP_PKEY_is_opaque(privkey)) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// We cannot check an opaque private key and have to trust that it
|
|
|
|
// matches.
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2017-02-28 19:26:51 +00:00
|
|
|
}
|
|
|
|
|
2017-01-24 21:59:42 +00:00
|
|
|
switch (EVP_PKEY_cmp(pubkey, privkey)) {
|
|
|
|
case 1:
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2017-01-24 21:59:42 +00:00
|
|
|
case 0:
|
|
|
|
OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
case -1:
|
|
|
|
OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
case -2:
|
|
|
|
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
assert(0);
|
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) {
|
2018-04-12 21:11:15 +01:00
|
|
|
if (privkey == nullptr) {
|
2017-01-24 21:59:42 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
if (cert->chain == nullptr ||
|
|
|
|
sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) == nullptr) {
|
2017-01-24 21:59:42 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-24 21:59:42 +00:00
|
|
|
}
|
|
|
|
|
2017-01-25 17:34:42 +00:00
|
|
|
CBS cert_cbs;
|
2018-04-12 21:11:15 +01:00
|
|
|
CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0),
|
|
|
|
&cert_cbs);
|
2017-07-20 19:49:15 +01:00
|
|
|
UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
|
2017-01-25 17:34:42 +00:00
|
|
|
if (!pubkey) {
|
|
|
|
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-01-25 17:34:42 +00:00
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
return ssl_compare_public_and_private_key(pubkey.get(), privkey);
|
2017-01-24 21:59:42 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_cert_check_digital_signature_key_usage(const CBS *in) {
|
2016-12-13 20:05:49 +00:00
|
|
|
CBS buf = *in;
|
|
|
|
|
|
|
|
CBS tbs_cert, outer_extensions;
|
|
|
|
int has_extensions;
|
|
|
|
if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// subjectPublicKeyInfo
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// issuerUniqueID
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_optional_asn1(
|
|
|
|
&tbs_cert, NULL, NULL,
|
|
|
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1) ||
|
2017-08-29 21:33:21 +01:00
|
|
|
// subjectUniqueID
|
2016-12-13 20:05:49 +00:00
|
|
|
!CBS_get_optional_asn1(
|
|
|
|
&tbs_cert, NULL, NULL,
|
|
|
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 2) ||
|
|
|
|
!CBS_get_optional_asn1(
|
|
|
|
&tbs_cert, &outer_extensions, &has_extensions,
|
|
|
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) {
|
2017-10-04 23:14:28 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!has_extensions) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CBS extensions;
|
|
|
|
if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) {
|
2017-10-04 23:14:28 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
while (CBS_len(&extensions) > 0) {
|
|
|
|
CBS extension, oid, contents;
|
|
|
|
if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
|
|
|
|
!CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
|
|
|
|
(CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) &&
|
|
|
|
!CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) ||
|
|
|
|
!CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) ||
|
|
|
|
CBS_len(&extension) != 0) {
|
2017-10-04 23:14:28 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f};
|
|
|
|
if (CBS_len(&oid) != sizeof(kKeyUsageOID) ||
|
2016-12-13 06:07:13 +00:00
|
|
|
OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) !=
|
|
|
|
0) {
|
2016-12-13 20:05:49 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
CBS bit_string;
|
|
|
|
if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) ||
|
|
|
|
CBS_len(&contents) != 0) {
|
2017-10-04 23:14:28 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// This is the KeyUsage extension. See
|
|
|
|
// https://tools.ietf.org/html/rfc5280#section-4.2.1.3
|
2016-12-13 20:05:49 +00:00
|
|
|
if (!CBS_is_valid_asn1_bitstring(&bit_string)) {
|
2017-10-04 23:14:28 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!CBS_asn1_bitstring_has_bit(&bit_string, 0)) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// No KeyUsage extension found.
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2016-12-13 20:05:49 +00:00
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
|
|
|
|
uint8_t *out_alert,
|
|
|
|
CBS *cbs) {
|
2017-02-02 18:57:17 +00:00
|
|
|
CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool;
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ret(sk_CRYPTO_BUFFER_new_null());
|
|
|
|
if (!ret) {
|
2016-07-14 03:40:36 +01:00
|
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2016-07-14 03:40:36 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
CBS child;
|
|
|
|
if (!CBS_get_u16_length_prefixed(cbs, &child)) {
|
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2016-07-14 03:40:36 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
while (CBS_len(&child) > 0) {
|
|
|
|
CBS distinguished_name;
|
|
|
|
if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) {
|
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2016-07-14 03:40:36 +01:00
|
|
|
}
|
|
|
|
|
2017-07-26 03:36:00 +01:00
|
|
|
UniquePtr<CRYPTO_BUFFER> buffer(
|
|
|
|
CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool));
|
|
|
|
if (!buffer ||
|
|
|
|
!PushToStack(ret.get(), std::move(buffer))) {
|
2016-07-14 03:40:36 +01:00
|
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2016-07-14 03:40:36 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-07-20 19:49:15 +01:00
|
|
|
if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) {
|
2018-05-09 18:56:09 +01:00
|
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
2017-02-23 23:02:58 +00:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
|
2017-07-20 19:49:15 +01:00
|
|
|
return nullptr;
|
2017-02-23 23:02:58 +00:00
|
|
|
}
|
|
|
|
|
2016-07-14 03:40:36 +01:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-04-13 23:51:30 +01:00
|
|
|
bool ssl_has_client_CAs(const SSL_CONFIG *cfg) {
|
2018-07-03 01:24:40 +01:00
|
|
|
const STACK_OF(CRYPTO_BUFFER) *names = cfg->client_CA.get();
|
|
|
|
if (names == nullptr) {
|
|
|
|
names = cfg->ssl->ctx->client_CA.get();
|
2017-10-11 17:29:36 +01:00
|
|
|
}
|
2018-07-03 01:24:40 +01:00
|
|
|
if (names == nullptr) {
|
2017-10-11 17:29:36 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return sk_CRYPTO_BUFFER_num(names) > 0;
|
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb) {
|
2016-07-14 03:03:11 +01:00
|
|
|
CBB child, name_cbb;
|
|
|
|
if (!CBB_add_u16_length_prefixed(cbb, &child)) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-07-14 03:03:11 +01:00
|
|
|
}
|
|
|
|
|
2018-07-03 01:24:40 +01:00
|
|
|
const STACK_OF(CRYPTO_BUFFER) *names = hs->config->client_CA.get();
|
2017-02-02 18:57:17 +00:00
|
|
|
if (names == NULL) {
|
2018-07-03 01:24:40 +01:00
|
|
|
names = hs->ssl->ctx->client_CA.get();
|
2017-02-02 18:57:17 +00:00
|
|
|
}
|
|
|
|
if (names == NULL) {
|
2016-07-14 03:03:11 +01:00
|
|
|
return CBB_flush(cbb);
|
|
|
|
}
|
|
|
|
|
2017-07-26 04:23:03 +01:00
|
|
|
for (const CRYPTO_BUFFER *name : names) {
|
2016-07-14 03:03:11 +01:00
|
|
|
if (!CBB_add_u16_length_prefixed(&child, &name_cbb) ||
|
2017-02-02 18:57:17 +00:00
|
|
|
!CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name),
|
|
|
|
CRYPTO_BUFFER_len(name))) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-07-14 03:03:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CBB_flush(cbb);
|
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
|
|
|
|
const CRYPTO_BUFFER *leaf) {
|
2018-04-13 23:51:30 +01:00
|
|
|
assert(ssl_protocol_version(hs->ssl) < TLS1_3_VERSION);
|
2016-10-07 05:27:05 +01:00
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Check the certificate's type matches the cipher.
|
2017-03-28 21:38:29 +01:00
|
|
|
if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) {
|
2016-07-15 12:07:40 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-07-15 12:07:40 +01:00
|
|
|
}
|
|
|
|
|
2017-08-29 21:33:21 +01:00
|
|
|
// Check key usages for all key types but RSA. This is needed to distinguish
|
|
|
|
// ECDH certificates, which we do not support, from ECDSA certificates. In
|
|
|
|
// principle, we should check RSA key usages based on cipher, but this breaks
|
|
|
|
// buggy antivirus deployments. Other key types are always used for signing.
|
|
|
|
//
|
|
|
|
// TODO(davidben): Get more recent data on RSA key usages.
|
2017-03-28 21:38:29 +01:00
|
|
|
if (EVP_PKEY_id(pkey) != EVP_PKEY_RSA) {
|
2016-12-13 20:05:49 +00:00
|
|
|
CBS leaf_cbs;
|
|
|
|
CBS_init(&leaf_cbs, CRYPTO_BUFFER_data(leaf), CRYPTO_BUFFER_len(leaf));
|
|
|
|
if (!ssl_cert_check_digital_signature_key_usage(&leaf_cbs)) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-07-15 12:07:40 +01:00
|
|
|
}
|
2017-03-28 21:38:29 +01:00
|
|
|
}
|
2016-07-15 12:07:40 +01:00
|
|
|
|
2017-03-28 21:38:29 +01:00
|
|
|
if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// Check the key's group and point format are acceptable.
|
2017-03-28 21:38:29 +01:00
|
|
|
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
|
2016-10-07 05:27:05 +01:00
|
|
|
uint16_t group_id;
|
|
|
|
if (!ssl_nid_to_group_id(
|
|
|
|
&group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) ||
|
2018-04-13 23:51:30 +01:00
|
|
|
!tls1_check_group_id(hs, group_id) ||
|
2016-10-07 05:27:05 +01:00
|
|
|
EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) {
|
2016-07-15 12:07:40 +01:00
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT);
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2016-07-15 12:07:40 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2016-07-15 12:07:40 +01:00
|
|
|
}
|
2016-12-10 20:46:58 +00:00
|
|
|
|
2018-09-06 00:44:15 +01:00
|
|
|
bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs) {
|
2017-03-30 21:51:53 +01:00
|
|
|
SSL *const ssl = hs->ssl;
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl_has_certificate(hs->config)) {
|
2017-08-29 21:33:21 +01:00
|
|
|
// Nothing to do.
|
2018-09-06 00:44:15 +01:00
|
|
|
return true;
|
2017-03-30 21:51:53 +01:00
|
|
|
}
|
|
|
|
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(hs)) {
|
2018-09-06 00:44:15 +01:00
|
|
|
return false;
|
2017-03-30 21:51:53 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
CBS leaf;
|
2018-04-13 23:51:30 +01:00
|
|
|
CRYPTO_BUFFER_init_CBS(
|
|
|
|
sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0), &leaf);
|
2017-03-30 21:51:53 +01:00
|
|
|
|
|
|
|
hs->local_pubkey = ssl_cert_parse_pubkey(&leaf);
|
|
|
|
return hs->local_pubkey != NULL;
|
|
|
|
}
|
|
|
|
|
Support symbol prefixes
- In base.h, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols.h
- In all .S files, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols_asm.h
- In base.h, BSSL_NAMESPACE_BEGIN and BSSL_NAMESPACE_END are
defined with appropriate values depending on whether
BORINGSSL_PREFIX is defined; these macros are used in place
of 'namespace bssl {' and '}'
- Add util/make_prefix_headers.go, which takes a list of symbols
and auto-generates the header files mentioned above
- In CMakeLists.txt, if BORINGSSL_PREFIX and BORINGSSL_PREFIX_SYMBOLS
are defined, run util/make_prefix_headers.go to generate header
files
- In various CMakeLists.txt files, add "global_target" that all
targets depend on to give us a place to hook logic that must run
before all other targets (in particular, the header file generation
logic)
- Document this in BUILDING.md, including the fact that it is
the caller's responsibility to provide the symbol list and keep it
up to date
- Note that this scheme has not been tested on Windows, and likely
does not work on it; Windows support will need to be added in a
future commit
Change-Id: If66a7157f46b5b66230ef91e15826b910cf979a2
Reviewed-on: https://boringssl-review.googlesource.com/31364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
2018-08-27 02:53:36 +01:00
|
|
|
BSSL_NAMESPACE_END
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
|
|
|
|
using namespace bssl;
|
|
|
|
|
|
|
|
int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs,
|
|
|
|
size_t num_certs, EVP_PKEY *privkey,
|
|
|
|
const SSL_PRIVATE_KEY_METHOD *privkey_method) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->config) {
|
|
|
|
return 0;
|
|
|
|
}
|
2018-07-03 01:24:40 +01:00
|
|
|
return cert_set_chain_and_key(ssl->config->cert.get(), certs, num_certs,
|
|
|
|
privkey, privkey_method);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs,
|
|
|
|
size_t num_certs, EVP_PKEY *privkey,
|
|
|
|
const SSL_PRIVATE_KEY_METHOD *privkey_method) {
|
2018-07-03 01:24:40 +01:00
|
|
|
return cert_set_chain_and_key(ctx->cert.get(), certs, num_certs, privkey,
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
privkey_method);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
|
|
|
|
const uint8_t *der) {
|
2017-07-26 03:36:00 +01:00
|
|
|
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
|
|
|
|
if (!buffer) {
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-07-03 01:24:40 +01:00
|
|
|
return ssl_set_cert(ctx->cert.get(), std::move(buffer));
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
|
2017-07-26 03:36:00 +01:00
|
|
|
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!buffer || !ssl->config) {
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-07-03 01:24:40 +01:00
|
|
|
return ssl_set_cert(ssl->config->cert.get(), std::move(buffer));
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
|
|
|
|
void *arg) {
|
2018-07-03 01:24:40 +01:00
|
|
|
ssl_cert_set_cert_cb(ctx->cert.get(), cb, arg);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->config) {
|
|
|
|
return;
|
|
|
|
}
|
2018-07-03 01:24:40 +01:00
|
|
|
ssl_cert_set_cert_cb(ssl->config->cert.get(), cb, arg);
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
2018-05-08 21:46:48 +01:00
|
|
|
const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) {
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
SSL_SESSION *session = SSL_get_session(ssl);
|
|
|
|
if (session == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
Give SSL_SESSION a destructor.
Previously we'd partially attempted the ssl_st / bssl::SSLConnection
subclassing split, but that gets messy when we actually try to add a
destructor, because CRYPTO_EX_DATA's cleanup function needs an ssl_st*,
not a bssl::SSLConnection*. Downcasting is technically undefined at this
point and will likely offend some CFI-like check.
Moreover, it appears that even with today's subclassing split,
New<SSL>() emits symbols like:
W ssl_st*& std::forward<ssl_st*&>(std::remove_reference<ssl_st*&>::type&)
The compiler does not bother emitting them in optimized builds, but it
does suggest we can't really avoid claiming the ssl_st type name at the
symbol level, short of doing reinterpret_casts at all API boundaries.
And, of course, we've already long claimed it at the #include level.
So I've just left this defining directly on ssl_session_st. The cost is
we need to write some silly "bssl::" prefixes in the headers, but so it
goes. In the likely event we change our minds again, we can always
revise this.
Change-Id: Ieb429e8eaabe7c2961ef7f8d9234fb71f19a5e2a
Reviewed-on: https://boringssl-review.googlesource.com/29587
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2018-06-29 21:26:38 +01:00
|
|
|
return session->certs.get();
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
2018-05-08 21:46:48 +01:00
|
|
|
const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) {
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
if (ssl->s3->hs == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
2017-07-20 19:49:15 +01:00
|
|
|
return ssl->s3->hs->ca_names.get();
|
Move libssl's internals into the bssl namespace.
This is horrible, but everything else I tried was worse. The goal with
this CL is to take the extern "C" out of ssl/internal.h and move most
symbols to namespace bssl, so we can start using C++ helpers and
destructors without worry.
Complications:
- Public API functions must be extern "C" and match their declaration in
ssl.h, which is unnamespaced. C++ really does not want you to
interleave namespaced and unnamespaced things. One can actually write
a namespaced extern "C" function, but this means, from C++'s
perspective, the function is namespaced. Trying to namespace the
public header would worked but ended up too deep a rabbithole.
- Our STACK_OF macros do not work right in namespaces.
- The typedefs for our exposed but opaque types are visible in the
header files and copied into consuming projects as forward
declarations. We ultimately want to give SSL a destructor, but
clobbering an unnamespaced ssl_st::~ssl_st seems bad manners.
- MSVC complains about ambiguous names if one typedefs SSL to bssl::SSL.
This CL opts for:
- ssl/*.cc must begin with #define BORINGSSL_INTERNAL_CXX_TYPES. This
informs the public headers to create forward declarations which are
compatible with our namespaces.
- For now, C++-defined type FOO ends up at bssl::FOO with a typedef
outside. Later I imagine we'll rename many of them.
- Internal functions get namespace bssl, so we stop worrying about
stomping the tls1_prf symbol. Exported C functions are stuck as they
are. Rather than try anything weird, bite the bullet and reorder files
which have a mix of public and private functions. I expect that over
time, the public functions will become fairly small as we move logic
to more idiomatic C++.
Files without any public C functions can just be written normally.
- To avoid MSVC troubles, some bssl types are renamed to CPlusPlusStyle
in advance of them being made idiomatic C++.
Bug: 132
Change-Id: Ic931895e117c38b14ff8d6e5a273e868796c7581
Reviewed-on: https://boringssl-review.googlesource.com/18124
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-18 21:34:25 +01:00
|
|
|
}
|
|
|
|
|
2017-02-14 23:34:54 +00:00
|
|
|
static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list,
|
2018-04-12 21:11:15 +01:00
|
|
|
size_t list_len) {
|
2017-02-14 23:34:54 +00:00
|
|
|
CBS sct_list;
|
|
|
|
CBS_init(&sct_list, list, list_len);
|
|
|
|
if (!ssl_is_sct_list_valid(&sct_list)) {
|
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-04-12 21:11:15 +01:00
|
|
|
cert->signed_cert_timestamp_list.reset(
|
|
|
|
CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), nullptr));
|
|
|
|
return cert->signed_cert_timestamp_list != nullptr;
|
2017-02-14 23:34:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
|
|
|
|
size_t list_len) {
|
2018-07-03 01:24:40 +01:00
|
|
|
return set_signed_cert_timestamp_list(ctx->cert.get(), list, list_len);
|
2017-02-14 23:34:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list,
|
|
|
|
size_t list_len) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->config) {
|
|
|
|
return 0;
|
|
|
|
}
|
2018-07-03 01:24:40 +01:00
|
|
|
return set_signed_cert_timestamp_list(ssl->config->cert.get(), list,
|
|
|
|
list_len);
|
2017-02-14 23:34:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
|
|
|
|
size_t response_len) {
|
2018-04-12 21:11:15 +01:00
|
|
|
ctx->cert->ocsp_response.reset(
|
|
|
|
CRYPTO_BUFFER_new(response, response_len, nullptr));
|
|
|
|
return ctx->cert->ocsp_response != nullptr;
|
2017-02-14 23:34:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response,
|
|
|
|
size_t response_len) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->config) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
ssl->config->cert->ocsp_response.reset(
|
2018-04-12 21:11:15 +01:00
|
|
|
CRYPTO_BUFFER_new(response, response_len, nullptr));
|
2018-04-13 23:51:30 +01:00
|
|
|
return ssl->config->cert->ocsp_response != nullptr;
|
2017-02-14 23:34:54 +00:00
|
|
|
}
|
2017-07-16 22:27:39 +01:00
|
|
|
|
|
|
|
void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) {
|
|
|
|
ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx);
|
2018-07-03 01:24:40 +01:00
|
|
|
ctx->client_CA.reset(name_list);
|
2017-07-16 22:27:39 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) {
|
2018-04-13 23:51:30 +01:00
|
|
|
if (!ssl->config) {
|
|
|
|
return;
|
|
|
|
}
|
2018-07-03 00:47:27 +01:00
|
|
|
ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl->config.get());
|
2018-07-03 01:24:40 +01:00
|
|
|
ssl->config->client_CA.reset(name_list);
|
2017-07-16 22:27:39 +01:00
|
|
|
}
|