Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. /* This implementation of poly1305 is by Andrew Moon
  15. * (https://github.com/floodyberry/poly1305-donna) and released as public
  16. * domain. */
  17. #include <openssl/poly1305.h>
  18. #include <string.h>
  19. #include <openssl/cpu.h>
  20. #if defined(OPENSSL_WINDOWS) || !defined(OPENSSL_X86_64)
  21. #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM)
  22. /* We can assume little-endian. */
  23. static uint32_t U8TO32_LE(const uint8_t *m) {
  24. uint32_t r;
  25. memcpy(&r, m, sizeof(r));
  26. return r;
  27. }
  28. static void U32TO8_LE(uint8_t *m, uint32_t v) { memcpy(m, &v, sizeof(v)); }
  29. #else
  30. static uint32_t U8TO32_LE(const uint8_t *m) {
  31. return (uint32_t)m[0] | (uint32_t)m[1] << 8 | (uint32_t)m[2] << 16 |
  32. (uint32_t)m[3] << 24;
  33. }
  34. static void U32TO8_LE(uint8_t *m, uint32_t v) {
  35. m[0] = v;
  36. m[1] = v >> 8;
  37. m[2] = v >> 16;
  38. m[3] = v >> 24;
  39. }
  40. #endif
  41. #if defined(OPENSSL_ARM) && !defined(OPENSSL_NO_ASM)
  42. void CRYPTO_poly1305_init_neon(poly1305_state *state, const uint8_t key[32]);
  43. void CRYPTO_poly1305_update_neon(poly1305_state *state, const uint8_t *in,
  44. size_t in_len);
  45. void CRYPTO_poly1305_finish_neon(poly1305_state *state, uint8_t mac[16]);
  46. #endif
  47. static uint64_t mul32x32_64(uint32_t a, uint32_t b) { return (uint64_t)a * b; }
  48. struct poly1305_state_st {
  49. uint32_t r0, r1, r2, r3, r4;
  50. uint32_t s1, s2, s3, s4;
  51. uint32_t h0, h1, h2, h3, h4;
  52. uint8_t buf[16];
  53. unsigned int buf_used;
  54. uint8_t key[16];
  55. };
  56. /* poly1305_blocks updates |state| given some amount of input data. This
  57. * function may only be called with a |len| that is not a multiple of 16 at the
  58. * end of the data. Otherwise the input must be buffered into 16 byte blocks. */
  59. static void poly1305_update(struct poly1305_state_st *state, const uint8_t *in,
  60. size_t len) {
  61. uint32_t t0, t1, t2, t3;
  62. uint64_t t[5];
  63. uint32_t b;
  64. uint64_t c;
  65. size_t j;
  66. uint8_t mp[16];
  67. if (len < 16) {
  68. goto poly1305_donna_atmost15bytes;
  69. }
  70. poly1305_donna_16bytes:
  71. t0 = U8TO32_LE(in);
  72. t1 = U8TO32_LE(in + 4);
  73. t2 = U8TO32_LE(in + 8);
  74. t3 = U8TO32_LE(in + 12);
  75. in += 16;
  76. len -= 16;
  77. state->h0 += t0 & 0x3ffffff;
  78. state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
  79. state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
  80. state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
  81. state->h4 += (t3 >> 8) | (1 << 24);
  82. poly1305_donna_mul:
  83. t[0] = mul32x32_64(state->h0, state->r0) + mul32x32_64(state->h1, state->s4) +
  84. mul32x32_64(state->h2, state->s3) + mul32x32_64(state->h3, state->s2) +
  85. mul32x32_64(state->h4, state->s1);
  86. t[1] = mul32x32_64(state->h0, state->r1) + mul32x32_64(state->h1, state->r0) +
  87. mul32x32_64(state->h2, state->s4) + mul32x32_64(state->h3, state->s3) +
  88. mul32x32_64(state->h4, state->s2);
  89. t[2] = mul32x32_64(state->h0, state->r2) + mul32x32_64(state->h1, state->r1) +
  90. mul32x32_64(state->h2, state->r0) + mul32x32_64(state->h3, state->s4) +
  91. mul32x32_64(state->h4, state->s3);
  92. t[3] = mul32x32_64(state->h0, state->r3) + mul32x32_64(state->h1, state->r2) +
  93. mul32x32_64(state->h2, state->r1) + mul32x32_64(state->h3, state->r0) +
  94. mul32x32_64(state->h4, state->s4);
  95. t[4] = mul32x32_64(state->h0, state->r4) + mul32x32_64(state->h1, state->r3) +
  96. mul32x32_64(state->h2, state->r2) + mul32x32_64(state->h3, state->r1) +
  97. mul32x32_64(state->h4, state->r0);
  98. state->h0 = (uint32_t)t[0] & 0x3ffffff;
  99. c = (t[0] >> 26);
  100. t[1] += c;
  101. state->h1 = (uint32_t)t[1] & 0x3ffffff;
  102. b = (uint32_t)(t[1] >> 26);
  103. t[2] += b;
  104. state->h2 = (uint32_t)t[2] & 0x3ffffff;
  105. b = (uint32_t)(t[2] >> 26);
  106. t[3] += b;
  107. state->h3 = (uint32_t)t[3] & 0x3ffffff;
  108. b = (uint32_t)(t[3] >> 26);
  109. t[4] += b;
  110. state->h4 = (uint32_t)t[4] & 0x3ffffff;
  111. b = (uint32_t)(t[4] >> 26);
  112. state->h0 += b * 5;
  113. if (len >= 16) {
  114. goto poly1305_donna_16bytes;
  115. }
  116. /* final bytes */
  117. poly1305_donna_atmost15bytes:
  118. if (!len) {
  119. return;
  120. }
  121. for (j = 0; j < len; j++) {
  122. mp[j] = in[j];
  123. }
  124. mp[j++] = 1;
  125. for (; j < 16; j++) {
  126. mp[j] = 0;
  127. }
  128. len = 0;
  129. t0 = U8TO32_LE(mp + 0);
  130. t1 = U8TO32_LE(mp + 4);
  131. t2 = U8TO32_LE(mp + 8);
  132. t3 = U8TO32_LE(mp + 12);
  133. state->h0 += t0 & 0x3ffffff;
  134. state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
  135. state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
  136. state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
  137. state->h4 += (t3 >> 8);
  138. goto poly1305_donna_mul;
  139. }
  140. void CRYPTO_poly1305_init(poly1305_state *statep, const uint8_t key[32]) {
  141. struct poly1305_state_st *state = (struct poly1305_state_st *)statep;
  142. uint32_t t0, t1, t2, t3;
  143. #if defined(OPENSSL_ARM) && !defined(OPENSSL_NO_ASM)
  144. if (CRYPTO_is_NEON_functional()) {
  145. CRYPTO_poly1305_init_neon(statep, key);
  146. return;
  147. }
  148. #endif
  149. t0 = U8TO32_LE(key + 0);
  150. t1 = U8TO32_LE(key + 4);
  151. t2 = U8TO32_LE(key + 8);
  152. t3 = U8TO32_LE(key + 12);
  153. /* precompute multipliers */
  154. state->r0 = t0 & 0x3ffffff;
  155. t0 >>= 26;
  156. t0 |= t1 << 6;
  157. state->r1 = t0 & 0x3ffff03;
  158. t1 >>= 20;
  159. t1 |= t2 << 12;
  160. state->r2 = t1 & 0x3ffc0ff;
  161. t2 >>= 14;
  162. t2 |= t3 << 18;
  163. state->r3 = t2 & 0x3f03fff;
  164. t3 >>= 8;
  165. state->r4 = t3 & 0x00fffff;
  166. state->s1 = state->r1 * 5;
  167. state->s2 = state->r2 * 5;
  168. state->s3 = state->r3 * 5;
  169. state->s4 = state->r4 * 5;
  170. /* init state */
  171. state->h0 = 0;
  172. state->h1 = 0;
  173. state->h2 = 0;
  174. state->h3 = 0;
  175. state->h4 = 0;
  176. state->buf_used = 0;
  177. memcpy(state->key, key + 16, sizeof(state->key));
  178. }
  179. void CRYPTO_poly1305_update(poly1305_state *statep, const uint8_t *in,
  180. size_t in_len) {
  181. unsigned int i;
  182. struct poly1305_state_st *state = (struct poly1305_state_st *)statep;
  183. #if defined(OPENSSL_ARM) && !defined(OPENSSL_NO_ASM)
  184. if (CRYPTO_is_NEON_functional()) {
  185. CRYPTO_poly1305_update_neon(statep, in, in_len);
  186. return;
  187. }
  188. #endif
  189. if (state->buf_used) {
  190. unsigned int todo = 16 - state->buf_used;
  191. if (todo > in_len) {
  192. todo = in_len;
  193. }
  194. for (i = 0; i < todo; i++) {
  195. state->buf[state->buf_used + i] = in[i];
  196. }
  197. state->buf_used += todo;
  198. in_len -= todo;
  199. in += todo;
  200. if (state->buf_used == 16) {
  201. poly1305_update(state, state->buf, 16);
  202. state->buf_used = 0;
  203. }
  204. }
  205. if (in_len >= 16) {
  206. size_t todo = in_len & ~0xf;
  207. poly1305_update(state, in, todo);
  208. in += todo;
  209. in_len &= 0xf;
  210. }
  211. if (in_len) {
  212. for (i = 0; i < in_len; i++) {
  213. state->buf[i] = in[i];
  214. }
  215. state->buf_used = in_len;
  216. }
  217. }
  218. void CRYPTO_poly1305_finish(poly1305_state *statep, uint8_t mac[16]) {
  219. struct poly1305_state_st *state = (struct poly1305_state_st *)statep;
  220. uint64_t f0, f1, f2, f3;
  221. uint32_t g0, g1, g2, g3, g4;
  222. uint32_t b, nb;
  223. #if defined(OPENSSL_ARM) && !defined(OPENSSL_NO_ASM)
  224. if (CRYPTO_is_NEON_functional()) {
  225. CRYPTO_poly1305_finish_neon(statep, mac);
  226. return;
  227. }
  228. #endif
  229. if (state->buf_used) {
  230. poly1305_update(state, state->buf, state->buf_used);
  231. }
  232. b = state->h0 >> 26;
  233. state->h0 = state->h0 & 0x3ffffff;
  234. state->h1 += b;
  235. b = state->h1 >> 26;
  236. state->h1 = state->h1 & 0x3ffffff;
  237. state->h2 += b;
  238. b = state->h2 >> 26;
  239. state->h2 = state->h2 & 0x3ffffff;
  240. state->h3 += b;
  241. b = state->h3 >> 26;
  242. state->h3 = state->h3 & 0x3ffffff;
  243. state->h4 += b;
  244. b = state->h4 >> 26;
  245. state->h4 = state->h4 & 0x3ffffff;
  246. state->h0 += b * 5;
  247. g0 = state->h0 + 5;
  248. b = g0 >> 26;
  249. g0 &= 0x3ffffff;
  250. g1 = state->h1 + b;
  251. b = g1 >> 26;
  252. g1 &= 0x3ffffff;
  253. g2 = state->h2 + b;
  254. b = g2 >> 26;
  255. g2 &= 0x3ffffff;
  256. g3 = state->h3 + b;
  257. b = g3 >> 26;
  258. g3 &= 0x3ffffff;
  259. g4 = state->h4 + b - (1 << 26);
  260. b = (g4 >> 31) - 1;
  261. nb = ~b;
  262. state->h0 = (state->h0 & nb) | (g0 & b);
  263. state->h1 = (state->h1 & nb) | (g1 & b);
  264. state->h2 = (state->h2 & nb) | (g2 & b);
  265. state->h3 = (state->h3 & nb) | (g3 & b);
  266. state->h4 = (state->h4 & nb) | (g4 & b);
  267. f0 = ((state->h0) | (state->h1 << 26)) + (uint64_t)U8TO32_LE(&state->key[0]);
  268. f1 = ((state->h1 >> 6) | (state->h2 << 20)) +
  269. (uint64_t)U8TO32_LE(&state->key[4]);
  270. f2 = ((state->h2 >> 12) | (state->h3 << 14)) +
  271. (uint64_t)U8TO32_LE(&state->key[8]);
  272. f3 = ((state->h3 >> 18) | (state->h4 << 8)) +
  273. (uint64_t)U8TO32_LE(&state->key[12]);
  274. U32TO8_LE(&mac[0], f0);
  275. f1 += (f0 >> 32);
  276. U32TO8_LE(&mac[4], f1);
  277. f2 += (f1 >> 32);
  278. U32TO8_LE(&mac[8], f2);
  279. f3 += (f2 >> 32);
  280. U32TO8_LE(&mac[12], f3);
  281. }
  282. #endif /* OPENSSL_WINDOWS || !OPENSSL_X86_64 */