2016-05-20 19:02:50 +01:00
|
|
|
// Copyright (c) 2016, Google Inc.
|
|
|
|
//
|
|
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
|
|
// copyright notice and this permission notice appear in all copies.
|
|
|
|
//
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
2016-08-01 14:50:57 +01:00
|
|
|
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
2016-05-20 19:02:50 +01:00
|
|
|
|
2016-05-17 21:06:03 +01:00
|
|
|
package newhope
|
|
|
|
|
|
|
|
// This file contains the reconciliation algorithm for NewHope. This is simply a
|
|
|
|
// monkey-see-monkey-do version of the reference code, with the exception that
|
|
|
|
// the key resulting from reconciliation is whitened with SHA2 rather than SHA3.
|
2016-05-20 19:02:50 +01:00
|
|
|
//
|
|
|
|
// Thanks to the authors of the reference code for allowing us to release this
|
|
|
|
// under the BoringSSL license.
|
2016-05-17 21:06:03 +01:00
|
|
|
|
|
|
|
import (
|
|
|
|
"crypto/sha256"
|
|
|
|
"io"
|
|
|
|
)
|
|
|
|
|
|
|
|
func abs(v int32) int32 {
|
|
|
|
mask := v >> 31
|
|
|
|
return (v ^ mask) - mask
|
|
|
|
}
|
|
|
|
|
|
|
|
func f(x int32) (v0, v1, k int32) {
|
|
|
|
// Next 6 lines compute t = x/q;
|
|
|
|
b := x * 2730
|
|
|
|
t := b >> 25
|
|
|
|
b = x - t*12289
|
|
|
|
b = 12288 - b
|
|
|
|
b >>= 31
|
|
|
|
t -= b
|
|
|
|
|
|
|
|
r := t & 1
|
|
|
|
xit := (t >> 1)
|
|
|
|
v0 = xit + r // v0 = round(x/(2*q))
|
|
|
|
|
|
|
|
t -= 1
|
|
|
|
r = t & 1
|
|
|
|
v1 = (t >> 1) + r
|
|
|
|
|
|
|
|
k = abs(x - (v0 * 2 * q))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// reconciliationData is the data needed for reconciliation. There are 2 bits
|
|
|
|
// per coefficient; this is the unpacked form.
|
|
|
|
type reconciliationData [n]uint8
|
|
|
|
|
|
|
|
func helprec(rand io.Reader, v *Poly) *reconciliationData {
|
|
|
|
var randBits [n / (4 * 8)]byte
|
|
|
|
if _, err := io.ReadFull(rand, randBits[:]); err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
ret := new(reconciliationData)
|
|
|
|
|
|
|
|
for i := uint(0); i < n/4; i++ {
|
|
|
|
rbit := int32((randBits[i>>3] >> (i & 7)) & 1)
|
|
|
|
|
|
|
|
a0, b0, k0 := f(8*int32(v[i]) + 4*rbit)
|
|
|
|
a1, b1, k1 := f(8*int32(v[256+i]) + 4*rbit)
|
|
|
|
a2, b2, k2 := f(8*int32(v[512+i]) + 4*rbit)
|
|
|
|
a3, b3, k3 := f(8*int32(v[768+i]) + 4*rbit)
|
|
|
|
|
|
|
|
k := (2*q - 1 - (k0 + k1 + k2 + k3)) >> 31
|
|
|
|
|
|
|
|
v0 := ((^k) & a0) ^ (k & b0)
|
|
|
|
v1 := ((^k) & a1) ^ (k & b1)
|
|
|
|
v2 := ((^k) & a2) ^ (k & b2)
|
|
|
|
v3 := ((^k) & a3) ^ (k & b3)
|
|
|
|
|
|
|
|
ret[i] = uint8((v0 - v3) & 3)
|
|
|
|
ret[i+256] = uint8((v1 - v3) & 3)
|
|
|
|
ret[i+512] = uint8((v2 - v3) & 3)
|
|
|
|
ret[i+768] = uint8((-k + 2*v3) & 3)
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
func g(x int32) int32 {
|
|
|
|
// Next 6 lines compute t = x/(4*q);
|
|
|
|
b := x * 2730
|
|
|
|
t := b >> 27
|
|
|
|
b = x - t*49156
|
|
|
|
b = 49155 - b
|
|
|
|
b >>= 31
|
|
|
|
t -= b
|
|
|
|
|
|
|
|
c := t & 1
|
|
|
|
t = (t >> 1) + c // t = round(x/(8*q))
|
|
|
|
|
|
|
|
t *= 8 * q
|
|
|
|
|
|
|
|
return abs(t - x)
|
|
|
|
}
|
|
|
|
|
|
|
|
func ldDecode(xi0, xi1, xi2, xi3 int32) uint8 {
|
|
|
|
t := g(xi0)
|
|
|
|
t += g(xi1)
|
|
|
|
t += g(xi2)
|
|
|
|
t += g(xi3)
|
|
|
|
|
|
|
|
t -= 8 * q
|
|
|
|
t >>= 31
|
|
|
|
return uint8(t & 1)
|
|
|
|
}
|
|
|
|
|
|
|
|
func reconcile(v *Poly, reconciliation *reconciliationData) Key {
|
|
|
|
key := new(Key)
|
|
|
|
|
|
|
|
for i := uint(0); i < n/4; i++ {
|
|
|
|
t0 := 16*q + 8*int32(v[i]) - q*(2*int32(reconciliation[i])+int32(reconciliation[i+768]))
|
|
|
|
t1 := 16*q + 8*int32(v[i+256]) - q*(2*int32(reconciliation[256+i])+int32(reconciliation[i+768]))
|
|
|
|
t2 := 16*q + 8*int32(v[i+512]) - q*(2*int32(reconciliation[512+i])+int32(reconciliation[i+768]))
|
|
|
|
t3 := 16*q + 8*int32(v[i+768]) - q*int32(reconciliation[i+768])
|
|
|
|
|
|
|
|
key[i>>3] |= ldDecode(t0, t1, t2, t3) << (i & 7)
|
|
|
|
}
|
|
|
|
|
|
|
|
return sha256.Sum256(key[:])
|
|
|
|
}
|