233 lines
5.6 KiB
Go
233 lines
5.6 KiB
Go
|
/* Copyright (c) 2018, Google Inc.
|
||
|
*
|
||
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||
|
|
||
|
package main
|
||
|
|
||
|
import (
|
||
|
"crypto/aes"
|
||
|
"crypto/cipher"
|
||
|
"crypto/elliptic"
|
||
|
"crypto/rand"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
p256 elliptic.Curve
|
||
|
zero, one, p, R, Rinv *big.Int
|
||
|
deterministicRand io.Reader
|
||
|
)
|
||
|
|
||
|
type coordinates int
|
||
|
|
||
|
const (
|
||
|
affine coordinates = iota
|
||
|
jacobian
|
||
|
)
|
||
|
|
||
|
func init() {
|
||
|
p256 = elliptic.P256()
|
||
|
|
||
|
zero = new(big.Int)
|
||
|
one = new(big.Int).SetInt64(1)
|
||
|
|
||
|
p = p256.Params().P
|
||
|
|
||
|
R = new(big.Int)
|
||
|
R.SetBit(R, 256, 1)
|
||
|
R.Mod(R, p)
|
||
|
|
||
|
Rinv = new(big.Int).ModInverse(R, p)
|
||
|
|
||
|
deterministicRand = newDeterministicRand()
|
||
|
}
|
||
|
|
||
|
func modMul(z, x, y *big.Int) *big.Int {
|
||
|
z.Mul(x, y)
|
||
|
return z.Mod(z, p)
|
||
|
}
|
||
|
|
||
|
func toMontgomery(z, x *big.Int) *big.Int {
|
||
|
return modMul(z, x, R)
|
||
|
}
|
||
|
|
||
|
func fromMontgomery(z, x *big.Int) *big.Int {
|
||
|
return modMul(z, x, Rinv)
|
||
|
}
|
||
|
|
||
|
func isAffineInfinity(x, y *big.Int) bool {
|
||
|
// Infinity, in affine coordinates, is represented as (0, 0) by
|
||
|
// both Go and p256-x86_64-asm.pl.
|
||
|
return x.Sign() == 0 && y.Sign() == 0
|
||
|
}
|
||
|
|
||
|
func randNonZeroInt(max *big.Int) *big.Int {
|
||
|
for {
|
||
|
r, err := rand.Int(deterministicRand, max)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
if r.Sign() != 0 {
|
||
|
return r
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func randPoint() (x, y *big.Int) {
|
||
|
k := randNonZeroInt(p256.Params().N)
|
||
|
return p256.ScalarBaseMult(k.Bytes())
|
||
|
}
|
||
|
|
||
|
func toJacobian(xIn, yIn *big.Int) (x, y, z *big.Int) {
|
||
|
if isAffineInfinity(xIn, yIn) {
|
||
|
// The Jacobian representation of infinity has Z = 0. Depending
|
||
|
// on the implementation, X and Y may be further constrained.
|
||
|
// Generalizing the curve equation to Jacobian coordinates for
|
||
|
// non-zero Z gives:
|
||
|
//
|
||
|
// y² = x³ - 3x + b, where x = X/Z² and y = Y/Z³
|
||
|
// Y² = X³ + aXZ⁴ + bZ⁶
|
||
|
//
|
||
|
// Taking that formula at Z = 0 gives Y² = X³. This constraint
|
||
|
// allows removing a special case in the point-on-curve check.
|
||
|
//
|
||
|
// BoringSSL, however, historically generated infinities with
|
||
|
// arbitrary X and Y and include the special case. We also have
|
||
|
// not verified that add and double preserve this
|
||
|
// property. Thus, generate test vectors with unrelated X and Y,
|
||
|
// to test that p256-x86_64-asm.pl correctly handles
|
||
|
// unconstrained representations of infinity.
|
||
|
x = randNonZeroInt(p)
|
||
|
y = randNonZeroInt(p)
|
||
|
z = zero
|
||
|
return
|
||
|
}
|
||
|
|
||
|
z = randNonZeroInt(p)
|
||
|
|
||
|
// X = xZ²
|
||
|
y = modMul(new(big.Int), z, z)
|
||
|
x = modMul(new(big.Int), xIn, y)
|
||
|
|
||
|
// Y = yZ³
|
||
|
modMul(y, y, z)
|
||
|
modMul(y, y, yIn)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func printMontgomery(name string, a *big.Int) {
|
||
|
a = toMontgomery(new(big.Int), a)
|
||
|
fmt.Printf("%s = %064x\n", name, a)
|
||
|
}
|
||
|
|
||
|
func printTestCase(ax, ay *big.Int, aCoord coordinates, bx, by *big.Int, bCoord coordinates) {
|
||
|
rx, ry := p256.Add(ax, ay, bx, by)
|
||
|
|
||
|
var az *big.Int
|
||
|
if aCoord == jacobian {
|
||
|
ax, ay, az = toJacobian(ax, ay)
|
||
|
} else if isAffineInfinity(ax, ay) {
|
||
|
az = zero
|
||
|
} else {
|
||
|
az = one
|
||
|
}
|
||
|
|
||
|
var bz *big.Int
|
||
|
if bCoord == jacobian {
|
||
|
bx, by, bz = toJacobian(bx, by)
|
||
|
} else if isAffineInfinity(bx, by) {
|
||
|
bz = zero
|
||
|
} else {
|
||
|
bz = one
|
||
|
}
|
||
|
|
||
|
fmt.Printf("Test = PointAdd\n")
|
||
|
printMontgomery("A.X", ax)
|
||
|
printMontgomery("A.Y", ay)
|
||
|
printMontgomery("A.Z", az)
|
||
|
printMontgomery("B.X", bx)
|
||
|
printMontgomery("B.Y", by)
|
||
|
printMontgomery("B.Z", bz)
|
||
|
printMontgomery("Result.X", rx)
|
||
|
printMontgomery("Result.Y", ry)
|
||
|
fmt.Printf("\n")
|
||
|
}
|
||
|
|
||
|
func main() {
|
||
|
fmt.Printf("# ∞ + ∞ = ∞.\n")
|
||
|
printTestCase(zero, zero, affine, zero, zero, affine)
|
||
|
|
||
|
fmt.Printf("# ∞ + ∞ = ∞, with an alternate representation of ∞.\n")
|
||
|
printTestCase(zero, zero, jacobian, zero, zero, jacobian)
|
||
|
|
||
|
gx, gy := p256.Params().Gx, p256.Params().Gy
|
||
|
fmt.Printf("# g + ∞ = g.\n")
|
||
|
printTestCase(gx, gy, affine, zero, zero, affine)
|
||
|
|
||
|
fmt.Printf("# g + ∞ = g, with an alternate representation of ∞.\n")
|
||
|
printTestCase(gx, gy, affine, zero, zero, jacobian)
|
||
|
|
||
|
fmt.Printf("# g + -g = ∞.\n")
|
||
|
minusGy := new(big.Int).Sub(p, gy)
|
||
|
printTestCase(gx, gy, affine, gx, minusGy, affine)
|
||
|
|
||
|
fmt.Printf("# Test some random Jacobian sums.\n")
|
||
|
for i := 0; i < 4; i++ {
|
||
|
ax, ay := randPoint()
|
||
|
bx, by := randPoint()
|
||
|
printTestCase(ax, ay, jacobian, bx, by, jacobian)
|
||
|
}
|
||
|
|
||
|
fmt.Printf("# Test some random Jacobian doublings.\n")
|
||
|
for i := 0; i < 4; i++ {
|
||
|
ax, ay := randPoint()
|
||
|
printTestCase(ax, ay, jacobian, ax, ay, jacobian)
|
||
|
}
|
||
|
|
||
|
fmt.Printf("# Test some random affine sums.\n")
|
||
|
for i := 0; i < 4; i++ {
|
||
|
ax, ay := randPoint()
|
||
|
bx, by := randPoint()
|
||
|
printTestCase(ax, ay, affine, bx, by, affine)
|
||
|
}
|
||
|
|
||
|
fmt.Printf("# Test some random affine doublings.\n")
|
||
|
for i := 0; i < 4; i++ {
|
||
|
ax, ay := randPoint()
|
||
|
printTestCase(ax, ay, affine, ax, ay, affine)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type deterministicRandom struct {
|
||
|
stream cipher.Stream
|
||
|
}
|
||
|
|
||
|
func newDeterministicRand() io.Reader {
|
||
|
block, err := aes.NewCipher(make([]byte, 128/8))
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
stream := cipher.NewCTR(block, make([]byte, block.BlockSize()))
|
||
|
return &deterministicRandom{stream}
|
||
|
}
|
||
|
|
||
|
func (r *deterministicRandom) Read(b []byte) (n int, err error) {
|
||
|
for i := range b {
|
||
|
b[i] = 0
|
||
|
}
|
||
|
r.stream.XORKeyStream(b, b)
|
||
|
return len(b), nil
|
||
|
}
|