diff --git a/crypto/digest_extra/digest_test.cc b/crypto/digest_extra/digest_test.cc index 72e10b11..de2e9d13 100644 --- a/crypto/digest_extra/digest_test.cc +++ b/crypto/digest_extra/digest_test.cc @@ -17,6 +17,7 @@ #include #include +#include #include @@ -183,6 +184,20 @@ static void TestDigest(const TestVector *test) { EXPECT_EQ(EVP_MD_size(test->md.func()), digest_len); CompareDigest(test, digest.get(), digest_len); + // Test with unaligned input. + ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)); + std::vector unaligned(strlen(test->input) + 1); + char *ptr = unaligned.data(); + if ((reinterpret_cast(ptr) & 1) == 0) { + ptr++; + } + OPENSSL_memcpy(ptr, test->input, strlen(test->input)); + for (size_t i = 0; i < test->repeat; i++) { + ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), ptr, strlen(test->input))); + } + ASSERT_TRUE(EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)); + CompareDigest(test, digest.get(), digest_len); + // Test the one-shot function. if (test->md.one_shot_func && test->repeat == 1) { uint8_t *out = test->md.one_shot_func((const uint8_t *)test->input, diff --git a/crypto/fipsmodule/sha/internal.h b/crypto/fipsmodule/sha/internal.h index 4def7f3a..a5d70c37 100644 --- a/crypto/fipsmodule/sha/internal.h +++ b/crypto/fipsmodule/sha/internal.h @@ -27,15 +27,18 @@ extern "C" { #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \ defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE) #define SHA1_ASM -void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num); +void sha1_block_data_order(uint32_t *state, const uint8_t *in, + size_t num_blocks); #endif #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \ defined(OPENSSL_AARCH64) #define SHA256_ASM #define SHA512_ASM -void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num); -void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num); +void sha256_block_data_order(uint32_t *state, const uint8_t *in, + size_t num_blocks); +void sha512_block_data_order(uint64_t *state, const uint8_t *in, + size_t num_blocks); #endif #endif // OPENSSL_NO_ASM diff --git a/crypto/fipsmodule/sha/sha512.c b/crypto/fipsmodule/sha/sha512.c index a6890563..517e9b0d 100644 --- a/crypto/fipsmodule/sha/sha512.c +++ b/crypto/fipsmodule/sha/sha512.c @@ -64,22 +64,11 @@ #include "../../internal.h" -// IMPLEMENTATION NOTES. -// // The 32-bit hash algorithms share a common byte-order neutral collector and // padding function implementations that operate on unaligned data, -// ../md32_common.h. This SHA-512 implementation does not. Reasons -// [in reverse order] are: -// -// - It's the only 64-bit hash algorithm for the moment of this writing, -// there is no need for common collector/padding implementation [yet]; -// - By supporting only a transform function that operates on *aligned* data -// the collector/padding function is simpler and easier to optimize. - -#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ - defined(__ARM_FEATURE_UNALIGNED) -#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA -#endif +// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of +// this writing, so there is no need for a common collector/padding +// implementation yet. int SHA384_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); @@ -135,8 +124,8 @@ uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) { } #if !defined(SHA512_ASM) -static void sha512_block_data_order(uint64_t *state, const uint64_t *W, - size_t num); +static void sha512_block_data_order(uint64_t *state, const uint8_t *in, + size_t num_blocks); #endif @@ -149,19 +138,13 @@ int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) { } void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) { -#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA - if ((size_t)block % sizeof(c->u.d[0]) != 0) { - OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p)); - block = c->u.p; - } -#endif - sha512_block_data_order(c->h, (uint64_t *)block, 1); + sha512_block_data_order(c->h, block, 1); } int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { uint64_t l; uint8_t *p = c->u.p; - const uint8_t *data = (const uint8_t *)in_data; + const uint8_t *data = in_data; if (len == 0) { return 1; @@ -187,27 +170,15 @@ int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { OPENSSL_memcpy(p + c->num, data, n), c->num = 0; len -= n; data += n; - sha512_block_data_order(c->h, (uint64_t *)p, 1); + sha512_block_data_order(c->h, p, 1); } } if (len >= sizeof(c->u)) { -#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA - if ((size_t)data % sizeof(c->u.d[0]) != 0) { - while (len >= sizeof(c->u)) { - OPENSSL_memcpy(p, data, sizeof(c->u)); - sha512_block_data_order(c->h, (uint64_t *)p, 1); - len -= sizeof(c->u); - data += sizeof(c->u); - } - } else -#endif - { - sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u)); - data += len; - len %= sizeof(c->u); - data -= len; - } + sha512_block_data_order(c->h, data, len / sizeof(c->u)); + data += len; + len %= sizeof(c->u); + data -= len; } if (len != 0) { @@ -219,7 +190,7 @@ int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { } int SHA512_Final(uint8_t *md, SHA512_CTX *sha) { - uint8_t *p = (uint8_t *)sha->u.p; + uint8_t *p = sha->u.p; size_t n = sha->num; p[n] = 0x80; // There always is a room for one @@ -227,7 +198,7 @@ int SHA512_Final(uint8_t *md, SHA512_CTX *sha) { if (n > (sizeof(sha->u) - 16)) { OPENSSL_memset(p + n, 0, sizeof(sha->u) - n); n = 0; - sha512_block_data_order(sha->h, (uint64_t *)p, 1); + sha512_block_data_order(sha->h, p, 1); } OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n); @@ -248,7 +219,7 @@ int SHA512_Final(uint8_t *md, SHA512_CTX *sha) { p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48); p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56); - sha512_block_data_order(sha->h, (uint64_t *)p, 1); + sha512_block_data_order(sha->h, p, 1); if (md == NULL) { // TODO(davidben): This NULL check is absent in other low-level hash 'final' @@ -348,20 +319,6 @@ static const uint64_t K512[80] = { __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \ ret; \ }) -#define PULL64(x) \ - ({ \ - uint64_t ret = *((const uint64_t *)(&(x))); \ - __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \ - ret; \ - }) -#elif(defined(__i386) || defined(__i386__)) -#define PULL64(x) \ - ({ \ - const unsigned int *p = (const unsigned int *)(&(x)); \ - unsigned int hi = p[0], lo = p[1]; \ - __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \ - ((uint64_t)hi) << 32 | lo; \ - }) #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) #define ROTR(a, n) \ ({ \ @@ -376,47 +333,22 @@ static const uint64_t K512[80] = { __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \ ret; \ }) -#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ - __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -#define PULL64(x) \ - ({ \ - uint64_t ret; \ - __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \ - ret; \ - }) #endif -#endif -#elif defined(_MSC_VER) -#if defined(_WIN64) // applies to both IA-64 and AMD64 +#elif defined(_MSC_VER) && defined(_WIN64) #pragma intrinsic(_rotr64) #define ROTR(a, n) _rotr64((a), n) #endif -#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) -static uint64_t __fastcall __pull64be(const void *x) { - _asm mov edx, [ecx + 0] - _asm mov eax, [ecx + 4] - _asm bswap edx - _asm bswap eax -} -#define PULL64(x) __pull64be(&(x)) -#if _MSC_VER <= 1200 -#pragma inline_depth(0) -#endif -#endif -#endif - -#ifndef PULL64 -#define B(x, j) \ - (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8)) -#define PULL64(x) \ - (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \ - B(x, 7)) -#endif #ifndef ROTR #define ROTR(x, s) (((x) >> s) | (x) << (64 - s)) #endif +static inline uint64_t load_u64_be(const void *ptr) { + uint64_t ret; + OPENSSL_memcpy(&ret, ptr, sizeof(ret)); + return CRYPTO_bswap8(ret); +} + #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7)) @@ -429,7 +361,7 @@ static uint64_t __fastcall __pull64be(const void *x) { #if defined(__i386) || defined(__i386__) || defined(_M_IX86) // This code should give better results on 32-bit CPU with less than // ~24 registers, both size and performance wise... -static void sha512_block_data_order(uint64_t *state, const uint64_t *W, +static void sha512_block_data_order(uint64_t *state, const uint8_t *in, size_t num) { uint64_t A, E, T; uint64_t X[9 + 80], *F; @@ -447,7 +379,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, F[7] = state[7]; for (i = 0; i < 16; i++, F--) { - T = PULL64(W[i]); + T = load_u64_be(in + i * 8); F[0] = A; F[4] = E; F[8] = T; @@ -478,7 +410,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, state[6] += F[6]; state[7] += F[7]; - W += 16; + in += 16 * 8; } } @@ -502,7 +434,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ } while (0) -static void sha512_block_data_order(uint64_t *state, const uint64_t *W, +static void sha512_block_data_order(uint64_t *state, const uint8_t *in, size_t num) { uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; uint64_t X[16]; @@ -519,37 +451,37 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, g = state[6]; h = state[7]; - T1 = X[0] = PULL64(W[0]); + T1 = X[0] = load_u64_be(in); ROUND_00_15(0, a, b, c, d, e, f, g, h); - T1 = X[1] = PULL64(W[1]); + T1 = X[1] = load_u64_be(in + 8); ROUND_00_15(1, h, a, b, c, d, e, f, g); - T1 = X[2] = PULL64(W[2]); + T1 = X[2] = load_u64_be(in + 2 * 8); ROUND_00_15(2, g, h, a, b, c, d, e, f); - T1 = X[3] = PULL64(W[3]); + T1 = X[3] = load_u64_be(in + 3 * 8); ROUND_00_15(3, f, g, h, a, b, c, d, e); - T1 = X[4] = PULL64(W[4]); + T1 = X[4] = load_u64_be(in + 4 * 8); ROUND_00_15(4, e, f, g, h, a, b, c, d); - T1 = X[5] = PULL64(W[5]); + T1 = X[5] = load_u64_be(in + 5 * 8); ROUND_00_15(5, d, e, f, g, h, a, b, c); - T1 = X[6] = PULL64(W[6]); + T1 = X[6] = load_u64_be(in + 6 * 8); ROUND_00_15(6, c, d, e, f, g, h, a, b); - T1 = X[7] = PULL64(W[7]); + T1 = X[7] = load_u64_be(in + 7 * 8); ROUND_00_15(7, b, c, d, e, f, g, h, a); - T1 = X[8] = PULL64(W[8]); + T1 = X[8] = load_u64_be(in + 8 * 8); ROUND_00_15(8, a, b, c, d, e, f, g, h); - T1 = X[9] = PULL64(W[9]); + T1 = X[9] = load_u64_be(in + 9 * 8); ROUND_00_15(9, h, a, b, c, d, e, f, g); - T1 = X[10] = PULL64(W[10]); + T1 = X[10] = load_u64_be(in + 10 * 8); ROUND_00_15(10, g, h, a, b, c, d, e, f); - T1 = X[11] = PULL64(W[11]); + T1 = X[11] = load_u64_be(in + 11 * 8); ROUND_00_15(11, f, g, h, a, b, c, d, e); - T1 = X[12] = PULL64(W[12]); + T1 = X[12] = load_u64_be(in + 12 * 8); ROUND_00_15(12, e, f, g, h, a, b, c, d); - T1 = X[13] = PULL64(W[13]); + T1 = X[13] = load_u64_be(in + 13 * 8); ROUND_00_15(13, d, e, f, g, h, a, b, c); - T1 = X[14] = PULL64(W[14]); + T1 = X[14] = load_u64_be(in + 14 * 8); ROUND_00_15(14, c, d, e, f, g, h, a, b); - T1 = X[15] = PULL64(W[15]); + T1 = X[15] = load_u64_be(in + 15 * 8); ROUND_00_15(15, b, c, d, e, f, g, h, a); for (i = 16; i < 80; i += 16) { @@ -580,7 +512,7 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, state[6] += g; state[7] += h; - W += 16; + in += 16 * 8; } } @@ -589,8 +521,6 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, #endif // !SHA512_ASM #undef ROTR -#undef PULL64 -#undef B #undef Sigma0 #undef Sigma1 #undef sigma0 @@ -599,5 +529,3 @@ static void sha512_block_data_order(uint64_t *state, const uint64_t *W, #undef Maj #undef ROUND_00_15 #undef ROUND_16_80 -#undef HOST_c2l -#undef HOST_l2c diff --git a/crypto/fipsmodule/sha/sha_test.cc b/crypto/fipsmodule/sha/sha_test.cc index 9cac47f1..5b248b4e 100644 --- a/crypto/fipsmodule/sha/sha_test.cc +++ b/crypto/fipsmodule/sha/sha_test.cc @@ -51,7 +51,7 @@ TEST(SHATest, SHA512ABI) { SHA512_CTX ctx; SHA512_Init(&ctx); - static const uint64_t kBuf[SHA512_CBLOCK / sizeof(uint64_t) * 4] = {0}; + static const uint8_t kBuf[SHA512_CBLOCK * 4] = {0}; CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 1); CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 2); CHECK_ABI(sha512_block_data_order, ctx.h, kBuf, 3);