Sfoglia il codice sorgente

Add a 32-bit SSSE3 GHASH implementation.

The 64-bit version can be fairly straightforwardly translated.

Ironically, this makes 32-bit x86 the first architecture to meet the
goal of constant-time AES-GCM given SIMD assembly. (Though x86_64 could
join by simply giving up on bsaes...)

Bug: 263
Change-Id: Icb2cec936457fac7132bbb5dbb094433bc14b86e
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35024
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
kris/onging/CECPQ3_patch15
David Benjamin 5 anni fa
committed by CQ bot account: commit-bot@chromium.org
parent
commit
5ce12e6436
5 ha cambiato i file con 306 aggiunte e 12 eliminazioni
  1. +2
    -0
      crypto/fipsmodule/CMakeLists.txt
  2. +288
    -0
      crypto/fipsmodule/modes/asm/ghash-ssse3-x86.pl
  3. +8
    -2
      crypto/fipsmodule/modes/gcm.c
  4. +1
    -3
      crypto/fipsmodule/modes/gcm_test.cc
  5. +7
    -7
      crypto/fipsmodule/modes/internal.h

+ 2
- 0
crypto/fipsmodule/CMakeLists.txt Vedi File

@@ -32,6 +32,7 @@ if(${ARCH} STREQUAL "x86")
aesni-x86.${ASM_EXT}
bn-586.${ASM_EXT}
co-586.${ASM_EXT}
ghash-ssse3-x86.${ASM_EXT}
ghash-x86.${ASM_EXT}
md5-586.${ASM_EXT}
sha1-586.${ASM_EXT}
@@ -98,6 +99,7 @@ perlasm(ghash-armv4.${ASM_EXT} modes/asm/ghash-armv4.pl)
perlasm(ghashp8-ppc.${ASM_EXT} modes/asm/ghashp8-ppc.pl)
perlasm(ghashv8-armx.${ASM_EXT} modes/asm/ghashv8-armx.pl)
perlasm(ghash-ssse3-x86_64.${ASM_EXT} modes/asm/ghash-ssse3-x86_64.pl)
perlasm(ghash-ssse3-x86.${ASM_EXT} modes/asm/ghash-ssse3-x86.pl)
perlasm(ghash-x86_64.${ASM_EXT} modes/asm/ghash-x86_64.pl)
perlasm(ghash-x86.${ASM_EXT} modes/asm/ghash-x86.pl)
perlasm(md5-586.${ASM_EXT} md5/asm/md5-586.pl)


+ 288
- 0
crypto/fipsmodule/modes/asm/ghash-ssse3-x86.pl Vedi File

@@ -0,0 +1,288 @@
#!/usr/bin/env perl
# Copyright (c) 2019, Google Inc.
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

# ghash-ssse3-x86.pl is a constant-time variant of the traditional 4-bit
# table-based GHASH implementation. It requires SSSE3 instructions.
#
# For background, the table-based strategy is a 4-bit windowed multiplication.
# It precomputes all 4-bit multiples of H (this is 16 128-bit rows), then loops
# over 4-bit windows of the input and indexes them up into the table. Visually,
# it multiplies as in the schoolbook multiplication diagram below, but with
# more terms. (Each term is 4 bits, so there are 32 terms in each row.) First
# it incorporates the terms labeled '1' by indexing the most significant term
# of X into the table. Then it shifts and repeats for '2' and so on.
#
# hhhhhh
# * xxxxxx
# ============
# 666666
# 555555
# 444444
# 333333
# 222222
# 111111
#
# This implementation changes the order. We treat the table as a 16×16 matrix
# and transpose it. The first row is then the first byte of each multiple of H,
# and so on. We then reorder terms as below. Observe that the terms labeled '1'
# and '2' are all lookups into the first row, etc. This maps well to the SSSE3
# pshufb instruction, using alternating terms of X in parallel as indices. This
# alternation is needed because pshufb maps 4 bits to 8 bits. Then we shift and
# repeat for each row.
#
# hhhhhh
# * xxxxxx
# ============
# 224466
# 113355
# 224466
# 113355
# 224466
# 113355
#
# Next we account for GCM's confusing bit order. The "first" bit is the least
# significant coefficient, but GCM treats the most sigificant bit within a byte
# as first. Bytes are little-endian, and bits are big-endian. We reverse the
# bytes in XMM registers for a consistent bit and byte ordering, but this means
# the least significant bit is the most significant coefficient and vice versa.
#
# For consistency, "low", "high", "left-shift", and "right-shift" refer to the
# bit ordering within the XMM register, rather than the reversed coefficient
# ordering. Low bits are less significant bits and more significant
# coefficients. Right-shifts move from MSB to the LSB and correspond to
# increasing the power of each coefficient.
#
# Note this bit reversal enters into the table's column indices. H*1 is stored
# in column 0b1000 and H*x^3 is stored in column 0b0001. It also means earlier
# table rows contain more significant coefficients, so we iterate forwards.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../../perlasm");
require "x86asm.pl";

$output = pop;
open STDOUT, ">$output";

&asm_init($ARGV[0]);

my ($Xi, $Htable, $in, $len) = ("edi", "esi", "edx", "ecx");
&static_label("reverse_bytes");
&static_label("low4_mask");

my $call_counter = 0;
# process_rows emits assembly code to process $rows rows of the table. On
# input, $Htable stores the pointer to the next row. xmm0 and xmm1 store the
# low and high halves of the input. The result so far is passed in xmm2. xmm3
# must be zero. On output, $Htable is advanced to the next row and xmm2 is
# updated. xmm3 remains zero. It clobbers eax, xmm4, xmm5, and xmm6.
sub process_rows {
my ($rows) = @_;
$call_counter++;

# Shifting whole XMM registers by bits is complex. psrldq shifts by
# bytes, and psrlq shifts the two 64-bit halves separately. Each row
# produces 8 bits of carry, and the reduction needs an additional 7-bit
# shift. This must fit in 64 bits so reduction can use psrlq. This
# allows up to 7 rows at a time.
die "Carry register would overflow 64 bits." if ($rows*8 + 7 > 64);

&mov("eax", $rows);
&set_label("loop_row_$call_counter");
&movdqa("xmm4", &QWP(0, $Htable));
&lea($Htable, &DWP(16, $Htable));

# Right-shift xmm2 and xmm3 by 8 bytes.
&movdqa("xmm6", "xmm2");
&palignr("xmm6", "xmm3", 1);
&movdqa("xmm3", "xmm6");
&psrldq("xmm2", 1);

# Load the next table row and index the low and high bits of the input.
# Note the low (respectively, high) half corresponds to more
# (respectively, less) significant coefficients.
&movdqa("xmm5", "xmm4");
&pshufb("xmm4", "xmm0");
&pshufb("xmm5", "xmm1");

# Add the high half (xmm5) without shifting.
&pxor("xmm2", "xmm5");

# Add the low half (xmm4). This must be right-shifted by 4 bits. First,
# add into the carry register (xmm3).
&movdqa("xmm5", "xmm4");
&psllq("xmm5", 60);
&movdqa("xmm6", "xmm5");
&pslldq("xmm6", 8);
&pxor("xmm3", "xmm6");

# Next, add into xmm2.
&psrldq("xmm5", 8);
&pxor("xmm2", "xmm5");
&psrlq("xmm4", 4);
&pxor("xmm2", "xmm4");

&sub("eax", 1);
&jnz(&label("loop_row_$call_counter"));

# Reduce the carry register. The reduction polynomial is 1 + x + x^2 +
# x^7, so we shift and XOR four times.
&pxor("xmm2", "xmm3"); # x^0 = 0
&psrlq("xmm3", 1);
&pxor("xmm2", "xmm3"); # x^1 = x
&psrlq("xmm3", 1);
&pxor("xmm2", "xmm3"); # x^(1+1) = x^2
&psrlq("xmm3", 5);
&pxor("xmm2", "xmm3"); # x^(1+1+5) = x^7
&pxor("xmm3", "xmm3");
____
}

# gcm_gmult_ssse3 multiplies |Xi| by |Htable| and writes the result to |Xi|.
# |Xi| is represented in GHASH's serialized byte representation. |Htable| is
# formatted as described above.
# void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
&function_begin("gcm_gmult_ssse3");
&mov($Xi, &wparam(0));
&mov($Htable, &wparam(1));

&movdqu("xmm0", &QWP(0, $Xi));
&call(&label("pic_point"));
&set_label("pic_point");
&blindpop("eax");
&movdqa("xmm7", &QWP(&label("reverse_bytes")."-".&label("pic_point"), "eax"));
&movdqa("xmm2", &QWP(&label("low4_mask")."-".&label("pic_point"), "eax"));

# Reverse input bytes to deserialize.
&pshufb("xmm0", "xmm7");

# Split each byte into low (xmm0) and high (xmm1) halves.
&movdqa("xmm1", "xmm2");
&pandn("xmm1", "xmm0");
&psrld("xmm1", 4);
&pand("xmm0", "xmm2");

# Maintain the result in xmm2 (the value) and xmm3 (carry bits). Note
# that, due to bit reversal, xmm3 contains bits that fall off when
# right-shifting, not left-shifting.
&pxor("xmm2", "xmm2");
&pxor("xmm3", "xmm3");

# We must reduce at least once every 7 rows, so divide into three
# chunks.
&process_rows(5);
&process_rows(5);
&process_rows(6);

# Store the result. Reverse bytes to serialize.
&pshufb("xmm2", "xmm7");
&movdqu(&QWP(0, $Xi), "xmm2");

# Zero any registers which contain secrets.
&pxor("xmm0", "xmm0");
&pxor("xmm1", "xmm1");
&pxor("xmm2", "xmm2");
&pxor("xmm3", "xmm3");
&pxor("xmm4", "xmm4");
&pxor("xmm5", "xmm5");
&pxor("xmm6", "xmm6");
&function_end("gcm_gmult_ssse3");

# gcm_ghash_ssse3 incorporates |len| bytes from |in| to |Xi|, using |Htable| as
# the key. It writes the result back to |Xi|. |Xi| is represented in GHASH's
# serialized byte representation. |Htable| is formatted as described above.
# void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
# size_t len);
&function_begin("gcm_ghash_ssse3");
&mov($Xi, &wparam(0));
&mov($Htable, &wparam(1));
&mov($in, &wparam(2));
&mov($len, &wparam(3));

&movdqu("xmm0", &QWP(0, $Xi));
&call(&label("pic_point"));
&set_label("pic_point");
&blindpop("ebx");
&movdqa("xmm7", &QWP(&label("reverse_bytes")."-".&label("pic_point"), "ebx"));

# This function only processes whole blocks.
&and($len, -16);

# Reverse input bytes to deserialize. We maintain the running
# total in xmm0.
&pshufb("xmm0", "xmm7");

# Iterate over each block. On entry to each iteration, xmm3 is zero.
&pxor("xmm3", "xmm3");
&set_label("loop_ghash");
&movdqa("xmm2", &QWP(&label("low4_mask")."-".&label("pic_point"), "ebx"));

# Incorporate the next block of input.
&movdqu("xmm1", &QWP(0, $in));
&pshufb("xmm1", "xmm7"); # Reverse bytes.
&pxor("xmm0", "xmm1");

# Split each byte into low (xmm0) and high (xmm1) halves.
&movdqa("xmm1", "xmm2");
&pandn("xmm1", "xmm0");
&psrld("xmm1", 4);
&pand("xmm0", "xmm2");

# Maintain the result in xmm2 (the value) and xmm3 (carry bits). Note
# that, due to bit reversal, xmm3 contains bits that fall off when
# right-shifting, not left-shifting.
&pxor("xmm2", "xmm2");
# xmm3 is already zero at this point.

# We must reduce at least once every 7 rows, so divide into three
# chunks.
&process_rows(5);
&process_rows(5);
&process_rows(6);

&movdqa("xmm0", "xmm2");

# Rewind $Htable for the next iteration.
&lea($Htable, &DWP(-256, $Htable));

# Advance input and continue.
&lea($in, &DWP(16, $in));
&sub($len, 16);
&jnz(&label("loop_ghash"));

# Reverse bytes and store the result.
&pshufb("xmm0", "xmm7");
&movdqu(&QWP(0, $Xi), "xmm0");

# Zero any registers which contain secrets.
&pxor("xmm0", "xmm0");
&pxor("xmm1", "xmm1");
&pxor("xmm2", "xmm2");
&pxor("xmm3", "xmm3");
&pxor("xmm4", "xmm4");
&pxor("xmm5", "xmm5");
&pxor("xmm6", "xmm6");
&function_end("gcm_ghash_ssse3");

# reverse_bytes is a permutation which, if applied with pshufb, reverses the
# bytes in an XMM register.
&set_label("reverse_bytes", 16);
&data_byte(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
# low4_mask is an XMM mask which selects the low four bits of each byte.
&set_label("low4_mask", 16);
&data_word(0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f);

&asm_finish();

close STDOUT;

+ 8
- 2
crypto/fipsmodule/modes/gcm.c Vedi File

@@ -241,7 +241,7 @@ void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
// still in L1 cache after encryption pass...
#define GHASH_CHUNK (3 * 1024)

#if defined(GHASH_ASM_X86_64)
#if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86)
void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]) {
// Run the existing 4-bit version.
gcm_init_4bit(Htable, Xi);
@@ -266,7 +266,7 @@ void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]) {
}
}
}
#endif // GHASH_ASM_X86_64
#endif // GHASH_ASM_X86_64 || GHASH_ASM_X86

#ifdef GCM_FUNCREF_4BIT
#undef GCM_MUL
@@ -321,6 +321,12 @@ void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
*out_hash = gcm_ghash_clmul;
return;
}
if (gcm_ssse3_capable()) {
gcm_init_ssse3(out_table, H.u);
*out_mult = gcm_gmult_ssse3;
*out_hash = gcm_ghash_ssse3;
return;
}
#elif defined(GHASH_ASM_ARM)
if (gcm_pmull_capable()) {
gcm_init_v8(out_table, H.u);


+ 1
- 3
crypto/fipsmodule/modes/gcm_test.cc Vedi File

@@ -148,7 +148,7 @@ TEST(GCMTest, ABI) {
}
#endif // GHASH_ASM_X86

#if defined(GHASH_ASM_X86_64)
#if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64)
if (gcm_ssse3_capable()) {
CHECK_ABI_SEH(gcm_init_ssse3, Htable, kH);
CHECK_ABI_SEH(gcm_gmult_ssse3, X, Htable);
@@ -156,9 +156,7 @@ TEST(GCMTest, ABI) {
CHECK_ABI_SEH(gcm_ghash_ssse3, X, Htable, buf, 16 * blocks);
}
}
#endif // GHASH_ASM_X86_64

#if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64)
if (crypto_gcm_clmul_enabled()) {
CHECK_ABI_SEH(gcm_init_clmul, Htable, kH);
CHECK_ABI_SEH(gcm_gmult_clmul, X, Htable);


+ 7
- 7
crypto/fipsmodule/modes/internal.h Vedi File

@@ -282,13 +282,6 @@ void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);

#if defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_64
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
size_t len);

OPENSSL_INLINE char gcm_ssse3_capable(void) {
return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0;
}
@@ -300,6 +293,13 @@ void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
size_t len);

#if defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_64
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
size_t len);

#define AESNI_GCM
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi);


Caricamento…
Annulla
Salva