Simplify ec_GFp_simple_points_make_affine.
Replace the tree-like structure by a linear approach, with fewer special cases to handle value 0. (Imported from upstream's d5213519c0ed87c71136084e7e843a4125ecc024.) Change-Id: Icdd4815066bdbab0d2c0020db6a8cacc49b3d82a Reviewed-on: https://boringssl-review.googlesource.com/1400 Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
parent
43ec06f705
commit
993fde5162
@ -1195,159 +1195,135 @@ err:
|
||||
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
||||
EC_POINT *points[], BN_CTX *ctx) {
|
||||
BN_CTX *new_ctx = NULL;
|
||||
BIGNUM *tmp0, *tmp1;
|
||||
size_t pow2 = 0;
|
||||
BIGNUM **heap = NULL;
|
||||
BIGNUM *tmp, *tmp_Z;
|
||||
BIGNUM **prod_Z = NULL;
|
||||
size_t i;
|
||||
int ret = 0;
|
||||
|
||||
if (num == 0)
|
||||
if (num == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (ctx == NULL) {
|
||||
ctx = new_ctx = BN_CTX_new();
|
||||
if (ctx == NULL)
|
||||
if (ctx == NULL) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
tmp0 = BN_CTX_get(ctx);
|
||||
tmp1 = BN_CTX_get(ctx);
|
||||
if (tmp0 == NULL || tmp1 == NULL)
|
||||
tmp = BN_CTX_get(ctx);
|
||||
tmp_Z = BN_CTX_get(ctx);
|
||||
if (tmp == NULL || tmp_Z == NULL) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Before converting the individual points, compute inverses of all Z values.
|
||||
* Modular inversion is rather slow, but luckily we can do with a single
|
||||
* explicit inversion, plus about 3 multiplications per input value.
|
||||
*/
|
||||
|
||||
pow2 = 1;
|
||||
while (num > pow2)
|
||||
pow2 <<= 1;
|
||||
/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
|
||||
* We need twice that. */
|
||||
pow2 <<= 1;
|
||||
|
||||
heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
|
||||
if (heap == NULL)
|
||||
prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
|
||||
if (prod_Z == NULL) {
|
||||
goto err;
|
||||
|
||||
/* TODO(bmoeller): There is no reason to use this tree structure.
|
||||
* We should instead proceed sequentially, exactly as in
|
||||
* ec_GFp_nistp_points_make_affine_internal, which makes everything
|
||||
* much simpler. */
|
||||
|
||||
/* The array is used as a binary tree, exactly as in heapsort:
|
||||
*
|
||||
* heap[1]
|
||||
* heap[2] heap[3]
|
||||
* heap[4] heap[5] heap[6] heap[7]
|
||||
* heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
|
||||
*
|
||||
* We put the Z's in the last line;
|
||||
* then we set each other node to the product of its two child-nodes (where
|
||||
* empty or 0 entries are treated as ones);
|
||||
* then we invert heap[1];
|
||||
* then we invert each other node by replacing it by the product of its
|
||||
* parent (after inversion) and its sibling (before inversion).
|
||||
*/
|
||||
heap[0] = NULL;
|
||||
for (i = pow2 / 2 - 1; i > 0; i--)
|
||||
heap[i] = NULL;
|
||||
for (i = 0; i < num; i++)
|
||||
heap[pow2 / 2 + i] = &points[i]->Z;
|
||||
for (i = pow2 / 2 + num; i < pow2; i++)
|
||||
heap[i] = NULL;
|
||||
|
||||
/* set each node to the product of its children */
|
||||
for (i = pow2 / 2 - 1; i > 0; i--) {
|
||||
heap[i] = BN_new();
|
||||
if (heap[i] == NULL)
|
||||
goto err;
|
||||
|
||||
if (heap[2 * i] != NULL) {
|
||||
if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) {
|
||||
if (!BN_copy(heap[i], heap[2 * i]))
|
||||
goto err;
|
||||
} else {
|
||||
if (BN_is_zero(heap[2 * i])) {
|
||||
if (!BN_copy(heap[i], heap[2 * i + 1]))
|
||||
goto err;
|
||||
} else {
|
||||
if (!group->meth->field_mul(group, heap[i], heap[2 * i],
|
||||
heap[2 * i + 1], ctx))
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* invert heap[1] */
|
||||
if (!BN_is_zero(heap[1])) {
|
||||
if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) {
|
||||
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_points_make_affine, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (group->meth->field_encode != 0) {
|
||||
/* in the Montgomery case, we just turned R*H (representing H)
|
||||
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
|
||||
* i.e. we have need to multiply by the Montgomery factor twice */
|
||||
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) {
|
||||
goto err;
|
||||
}
|
||||
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) {
|
||||
memset(prod_Z, 0, num * sizeof(prod_Z[0]));
|
||||
for (i = 0; i < num; i++) {
|
||||
prod_Z[i] = BN_new();
|
||||
if (prod_Z[i] == NULL) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* set other heap[i]'s to their inverses */
|
||||
for (i = 2; i < pow2 / 2 + num; i += 2) {
|
||||
/* i is even */
|
||||
if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) {
|
||||
if (!BN_is_zero(heap[i])) {
|
||||
if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx))
|
||||
goto err;
|
||||
if (!BN_copy(heap[i], tmp0))
|
||||
goto err;
|
||||
if (!BN_copy(heap[i + 1], tmp1))
|
||||
goto err;
|
||||
} else {
|
||||
if (!BN_copy(heap[i + 1], heap[i / 2]))
|
||||
goto err;
|
||||
/* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
||||
* skipping any zero-valued inputs (pretend that they're 1). */
|
||||
|
||||
if (!BN_is_zero(&points[0]->Z)) {
|
||||
if (!BN_copy(prod_Z[0], &points[0]->Z)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (group->meth->field_set_to_one != 0) {
|
||||
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_copy(heap[i], heap[i / 2]))
|
||||
if (!BN_one(prod_Z[0])) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* we have replaced all non-zero Z's by their inverses, now fix up all the
|
||||
* points */
|
||||
for (i = 1; i < num; i++) {
|
||||
if (!BN_is_zero(&points[i]->Z)) {
|
||||
if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
|
||||
&points[i]->Z, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now use a single explicit inversion to replace every
|
||||
* non-zero points[i]->Z by its inverse. */
|
||||
|
||||
if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
|
||||
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_points_make_affine, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (group->meth->field_encode != NULL) {
|
||||
/* In the Montgomery case, we just turned R*H (representing H)
|
||||
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
|
||||
* i.e. we need to multiply by the Montgomery factor twice. */
|
||||
if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
|
||||
!group->meth->field_encode(group, tmp, tmp, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = num - 1; i > 0; --i) {
|
||||
/* Loop invariant: tmp is the product of the inverses of
|
||||
* points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
|
||||
if (BN_is_zero(&points[i]->Z)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Set tmp_Z to the inverse of points[i]->Z (as product
|
||||
* of Z inverses 0 .. i, Z values 0 .. i - 1). */
|
||||
if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
|
||||
/* Update tmp to satisfy the loop invariant for i - 1. */
|
||||
!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
|
||||
/* Replace points[i]->Z by its inverse. */
|
||||
!BN_copy(&points[i]->Z, tmp_Z)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Replace points[0]->Z by its inverse. */
|
||||
if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Finally, fix up the X and Y coordinates for all points. */
|
||||
for (i = 0; i < num; i++) {
|
||||
EC_POINT *p = points[i];
|
||||
|
||||
if (!BN_is_zero(&p->Z)) {
|
||||
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
|
||||
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
|
||||
if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
|
||||
!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
|
||||
!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
|
||||
!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx))
|
||||
goto err;
|
||||
|
||||
if (group->meth->field_set_to_one != 0) {
|
||||
if (!group->meth->field_set_to_one(group, &p->Z, ctx))
|
||||
if (group->meth->field_set_to_one != NULL) {
|
||||
if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_one(&p->Z))
|
||||
if (!BN_one(&p->Z)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
p->Z_is_one = 1;
|
||||
}
|
||||
@ -1357,16 +1333,18 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
if (new_ctx != NULL)
|
||||
if (new_ctx != NULL) {
|
||||
BN_CTX_free(new_ctx);
|
||||
if (heap != NULL) {
|
||||
/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
|
||||
for (i = pow2 / 2 - 1; i > 0; i--) {
|
||||
if (heap[i] != NULL)
|
||||
BN_clear_free(heap[i]);
|
||||
}
|
||||
OPENSSL_free(heap);
|
||||
}
|
||||
if (prod_Z != NULL) {
|
||||
for (i = 0; i < num; i++) {
|
||||
if (prod_Z[i] != NULL) {
|
||||
BN_clear_free(prod_Z[i]);
|
||||
}
|
||||
}
|
||||
OPENSSL_free(prod_Z);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user