Revert "Include some C versions of the x86-64 P-256 code."

This reverts commit ba84265c48.

No semantic change; the reverted code was commented out.
This commit is contained in:
Adam Langley 2016-12-15 10:35:12 -08:00
parent ba84265c48
commit b479c5df34

View File

@ -39,244 +39,6 @@
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
!defined(OPENSSL_SMALL)
#if 0
/* This code was was of the original submission by Intel and is included here
* under so that it is covered by the ISC license.
*
* Note that this code is still using the (0, 0) form of the point-at-infinity
* so it may not match the current assembly code. */
/* Point double: r = 2*a */
static void ecp_nistz256_point_double(P256_POINT * r, const P256_POINT * a)
{
BN_ULONG S[P256_LIMBS];
BN_ULONG M[P256_LIMBS];
BN_ULONG Zsqr[P256_LIMBS];
BN_ULONG tmp0[P256_LIMBS];
const BN_ULONG *in_x = a->X;
const BN_ULONG *in_y = a->Y;
const BN_ULONG *in_z = a->Z;
BN_ULONG *res_x = r->X;
BN_ULONG *res_y = r->Y;
BN_ULONG *res_z = r->Z;
ecp_nistz256_mul_by_2(S, in_y);
ecp_nistz256_sqr_mont(Zsqr, in_z);
ecp_nistz256_sqr_mont(S, S);
ecp_nistz256_mul_mont(res_z, in_z, in_y);
ecp_nistz256_mul_by_2(res_z, res_z);
ecp_nistz256_add(M, in_x, Zsqr);
ecp_nistz256_sub(Zsqr, in_x, Zsqr);
ecp_nistz256_sqr_mont(res_y, S);
ecp_nistz256_div_by_2(res_y, res_y);
ecp_nistz256_mul_mont(M, M, Zsqr);
ecp_nistz256_mul_by_3(M, M);
ecp_nistz256_mul_mont(S, S, in_x);
ecp_nistz256_mul_by_2(tmp0, S);
ecp_nistz256_sqr_mont(res_x, M);
ecp_nistz256_sub(res_x, res_x, tmp0);
ecp_nistz256_sub(S, S, res_x);
ecp_nistz256_mul_mont(S, S, M);
ecp_nistz256_sub(res_y, S, res_y);
}
/* Point addition: r = a+b */
static void ecp_nistz256_point_add(P256_POINT * r,
const P256_POINT * a, const P256_POINT * b)
{
BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
BN_ULONG Z1sqr[P256_LIMBS];
BN_ULONG Z2sqr[P256_LIMBS];
BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
BN_ULONG Hsqr[P256_LIMBS];
BN_ULONG Rsqr[P256_LIMBS];
BN_ULONG Hcub[P256_LIMBS];
BN_ULONG res_x[P256_LIMBS];
BN_ULONG res_y[P256_LIMBS];
BN_ULONG res_z[P256_LIMBS];
BN_ULONG in1infty, in2infty;
const BN_ULONG *in1_x = a->X;
const BN_ULONG *in1_y = a->Y;
const BN_ULONG *in1_z = a->Z;
const BN_ULONG *in2_x = b->X;
const BN_ULONG *in2_y = b->Y;
const BN_ULONG *in2_z = b->Z;
/* We encode infinity as (0,0), which is not on the curve,
* so it is OK. */
in1infty = in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3];
if (P256_LIMBS == 8)
in1infty |= in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7];
in2infty = in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3];
if (P256_LIMBS == 8)
in2infty |= in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7];
in1infty = is_zero(in1infty);
in2infty = is_zero(in2infty);
ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
/* This should not happen during sign/ecdh,
* so no constant time violation */
if (is_equal(U1, U2) && !in1infty && !in2infty) {
if (is_equal(S1, S2)) {
ecp_nistz256_point_double(r, a);
return;
} else {
memset(r, 0, sizeof(*r));
return;
}
}
ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
ecp_nistz256_sub(res_x, Rsqr, Hsqr);
ecp_nistz256_sub(res_x, res_x, Hcub);
ecp_nistz256_sub(res_y, U2, res_x);
ecp_nistz256_mul_mont(S2, S1, Hcub);
ecp_nistz256_mul_mont(res_y, R, res_y);
ecp_nistz256_sub(res_y, res_y, S2);
copy_conditional(res_x, in2_x, in1infty);
copy_conditional(res_y, in2_y, in1infty);
copy_conditional(res_z, in2_z, in1infty);
copy_conditional(res_x, in1_x, in2infty);
copy_conditional(res_y, in1_y, in2infty);
copy_conditional(res_z, in1_z, in2infty);
memcpy(r->X, res_x, sizeof(res_x));
memcpy(r->Y, res_y, sizeof(res_y));
memcpy(r->Z, res_z, sizeof(res_z));
}
/* Point addition when b is known to be affine: r = a+b */
static void ecp_nistz256_point_add_affine(P256_POINT * r,
const P256_POINT * a,
const P256_POINT_AFFINE * b)
{
BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
BN_ULONG Z1sqr[P256_LIMBS];
BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
BN_ULONG Hsqr[P256_LIMBS];
BN_ULONG Rsqr[P256_LIMBS];
BN_ULONG Hcub[P256_LIMBS];
BN_ULONG res_x[P256_LIMBS];
BN_ULONG res_y[P256_LIMBS];
BN_ULONG res_z[P256_LIMBS];
BN_ULONG in1infty, in2infty;
const BN_ULONG *in1_x = a->X;
const BN_ULONG *in1_y = a->Y;
const BN_ULONG *in1_z = a->Z;
const BN_ULONG *in2_x = b->X;
const BN_ULONG *in2_y = b->Y;
/* In affine representation we encode infty as (0,0),
* which is not on the curve, so it is OK */
in1infty = in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3];
if (P256_LIMBS == 8)
in1infty |= in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7];
in2infty = in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3];
if (P256_LIMBS == 8)
in2infty |= in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7];
in1infty = is_zero(in1infty);
in2infty = is_zero(in2infty);
ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
ecp_nistz256_sub(res_x, Rsqr, Hsqr);
ecp_nistz256_sub(res_x, res_x, Hcub);
ecp_nistz256_sub(H, U2, res_x);
ecp_nistz256_mul_mont(S2, in1_y, Hcub);
ecp_nistz256_mul_mont(H, H, R);
ecp_nistz256_sub(res_y, H, S2);
copy_conditional(res_x, in2_x, in1infty);
copy_conditional(res_x, in1_x, in2infty);
copy_conditional(res_y, in2_y, in1infty);
copy_conditional(res_y, in1_y, in2infty);
copy_conditional(res_z, ONE, in1infty);
copy_conditional(res_z, in1_z, in2infty);
memcpy(r->X, res_x, sizeof(res_x));
memcpy(r->Y, res_y, sizeof(res_y));
memcpy(r->Z, res_z, sizeof(res_z));
}
#endif
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
/* One converted into the Montgomery domain */