浏览代码

Unwind total_num from wNAF_mul.

The EC_POINTs are still allocated (for now), but everything else fits on
the stack nicely, which saves a lot of fiddling with cleanup and
allocations.

Change-Id: Ib8480737ecc97e6b40b2c05f217cd8d3dc82cb72
Reviewed-on: https://boringssl-review.googlesource.com/25150
Reviewed-by: Adam Langley <agl@google.com>
kris/onging/CECPQ3_patch15
David Benjamin 6 年前
committed by Adam Langley
父节点
当前提交
b9f30bb6fe
共有 1 个文件被更改,包括 104 次插入130 次删除
  1. +104
    -130
      crypto/fipsmodule/ec/wnaf.c

+ 104
- 130
crypto/fipsmodule/ec/wnaf.c 查看文件

@@ -170,7 +170,6 @@ static int compute_wNAF(const EC_GROUP *group, int8_t *out,
return 1;
}


// TODO: table should be optimised for the wNAF-based implementation,
// sometimes smaller windows will give better performance
// (thus the boundaries should be increased)
@@ -190,165 +189,150 @@ static size_t window_bits_for_scalar_size(size_t b) {
return 1;
}

int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;
size_t total_num = 0;
size_t i, j;
int k;
int8_t **wNAF = NULL; // individual wNAFs
size_t num_val = 0;
EC_POINT **val = NULL; // precomputation
EC_POINT **v;
EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val'
// EC_WNAF_MAX_WINDOW_BITS is the largest value returned by
// |window_bits_for_scalar_size|.
#define EC_WNAF_MAX_WINDOW_BITS 4

// compute_precomp sets |out[i]| to a newly-allocated |EC_POINT| containing
// (2*i+1)*p, for i from 0 to |len|. It returns one on success and
// zero on error.
static int compute_precomp(const EC_GROUP *group, EC_POINT **out,
const EC_POINT *p, size_t len, BN_CTX *ctx) {
out[0] = EC_POINT_new(group);
if (out[0] == NULL ||
!EC_POINT_copy(out[0], p)) {
return 0;
}

int ret = 0;
EC_POINT *two_p = EC_POINT_new(group);
if (two_p == NULL ||
!EC_POINT_dbl(group, two_p, p, ctx)) {
goto err;
}

if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
for (size_t i = 1; i < len; i++) {
out[i] = EC_POINT_new(group);
if (out[i] == NULL ||
!EC_POINT_add(group, out[i], out[i - 1], two_p, ctx)) {
goto err;
}
}

// TODO: This function used to take |points| and |scalars| as arrays of
// |num| elements. The code below should be simplified to work in terms of |p|
// and |p_scalar|.
size_t num = p != NULL ? 1 : 0;
const EC_POINT **points = p != NULL ? &p : NULL;
const EC_SCALAR **scalars = p != NULL ? &p_scalar : NULL;

total_num = num;
ret = 1;

if (g_scalar != NULL) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
goto err;
}
err:
EC_POINT_free(two_p);
return ret;
}

++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars'
static int lookup_precomp(const EC_GROUP *group, EC_POINT *out,
EC_POINT *const *precomp, int digit, BN_CTX *ctx) {
if (digit < 0) {
digit = -digit;
return EC_POINT_copy(out, precomp[digit >> 1]) &&
EC_POINT_invert(group, out, ctx);
}

wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
return EC_POINT_copy(out, precomp[digit >> 1]);
}

// Ensure wNAF is initialised in case we end up going to err.
if (wNAF != NULL) {
OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
}
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
EC_POINT *precomp_storage[2 * (1 << (EC_WNAF_MAX_WINDOW_BITS - 1))] = {NULL};
EC_POINT **g_precomp = NULL, **p_precomp = NULL;
int8_t g_wNAF[EC_MAX_SCALAR_BYTES * 8 + 1];
int8_t p_wNAF[EC_MAX_SCALAR_BYTES * 8 + 1];
EC_POINT *tmp = NULL;
int ret = 0;

if (!wNAF || !val_sub) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
}

size_t bits = BN_num_bits(&group->order);
size_t wsize = window_bits_for_scalar_size(bits);
size_t wNAF_len = bits + 1;
for (i = 0; i < total_num; i++) {
wNAF[i] = OPENSSL_malloc(wNAF_len);
if (wNAF[i] == NULL ||
!compute_wNAF(group, wNAF[i], (i < num ? scalars[i] : g_scalar), bits,
wsize)) {
goto err;
}
}

// num_val is the total number of temporarily precomputed points
num_val = total_num * ((size_t)1 << (wsize - 1));
// All points we precompute now go into a single array 'val'. 'val_sub[i]' is
// a pointer to the subarray for the i-th point.
val = OPENSSL_malloc(num_val * sizeof(val[0]));
if (val == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_memset(val, 0, num_val * sizeof(val[0]));

// allocate points for precomputation
v = val;
for (i = 0; i < total_num; i++) {
val_sub[i] = v;
for (j = 0; j < ((size_t)1 << (wsize - 1)); j++) {
*v = EC_POINT_new(group);
if (*v == NULL) {
goto err;
}
v++;
}
}
if (!(v == val + num_val)) {
size_t precomp_len = (size_t)1 << (wsize - 1);
if (wNAF_len > OPENSSL_ARRAY_SIZE(g_wNAF) ||
wNAF_len > OPENSSL_ARRAY_SIZE(p_wNAF) ||
2 * precomp_len > OPENSSL_ARRAY_SIZE(precomp_storage)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}

if (!(tmp = EC_POINT_new(group))) {
goto err;
}

// prepare precomputed values:
// val_sub[i][0] := points[i]
// val_sub[i][1] := 3 * points[i]
// val_sub[i][2] := 5 * points[i]
// ...
for (i = 0; i < total_num; i++) {
if (i < num) {
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
goto err;
}
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
// TODO(davidben): |mul_public| is for ECDSA verification which can assume
// non-NULL inputs, but this code is also used for |mul| which cannot. It's
// not constant-time, so replace the generic |mul| and remove the NULL checks.
size_t total_precomp = 0;
if (g_scalar != NULL) {
const EC_POINT *g = EC_GROUP_get0_generator(group);
if (g == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
goto err;
}

if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
g_precomp = precomp_storage + total_precomp;
total_precomp += precomp_len;
if (!compute_wNAF(group, g_wNAF, g_scalar, bits, wsize) ||
!compute_precomp(group, g_precomp, g, precomp_len, ctx)) {
goto err;
}
for (j = 1; j < ((size_t)1 << (wsize - 1)); j++) {
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
goto err;
}
}

if (p_scalar != NULL) {
p_precomp = precomp_storage + total_precomp;
total_precomp += precomp_len;
if (!compute_wNAF(group, p_wNAF, p_scalar, bits, wsize) ||
!compute_precomp(group, p_precomp, p, precomp_len, ctx)) {
goto err;
}
}

#if 1 // optional; window_bits_for_scalar_size assumes we do this step
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
tmp = EC_POINT_new(group);
if (tmp == NULL ||
// |window_bits_for_scalar_size| assumes we do this step.
!EC_POINTs_make_affine(group, total_precomp, precomp_storage, ctx)) {
goto err;
}
#endif

int r_is_at_infinity = 1;

for (k = wNAF_len - 1; k >= 0; k--) {
for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
goto err;
}

for (i = 0; i < total_num; i++) {
int digit = wNAF[i][k];
if (digit) {
const EC_POINT *tmp2;
if (digit < 0) {
digit = -digit;
if (!EC_POINT_copy(tmp, val_sub[i][digit >> 1]) ||
!EC_POINT_invert(group, tmp, ctx)) {
if (g_scalar != NULL) {
if (g_wNAF[k] != 0) {
if (!lookup_precomp(group, tmp, g_precomp, g_wNAF[k], ctx)) {
goto err;
}
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, tmp)) {
goto err;
}
tmp2 = tmp;
} else {
tmp2 = val_sub[i][digit >> 1];
r_is_at_infinity = 0;
} else if (!EC_POINT_add(group, r, r, tmp, ctx)) {
goto err;
}
}
}

if (p_scalar != NULL) {
if (p_wNAF[k] != 0) {
if (!lookup_precomp(group, tmp, p_precomp, p_wNAF[k], ctx)) {
goto err;
}
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, tmp2)) {
if (!EC_POINT_copy(r, tmp)) {
goto err;
}
r_is_at_infinity = 0;
} else {
if (!EC_POINT_add(group, r, r, tmp2, ctx)) {
goto err;
}
} else if (!EC_POINT_add(group, r, r, tmp, ctx)) {
goto err;
}
}
}
@@ -364,20 +348,10 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
err:
BN_CTX_free(new_ctx);
EC_POINT_free(tmp);
if (wNAF != NULL) {
for (i = 0; i < total_num; i++) {
OPENSSL_free(wNAF[i]);
}

OPENSSL_free(wNAF);
}
if (val != NULL) {
for (i = 0; i < num_val; i++) {
EC_POINT_free(val[i]);
}

OPENSSL_free(val);
OPENSSL_cleanse(&g_wNAF, sizeof(g_wNAF));
OPENSSL_cleanse(&p_wNAF, sizeof(p_wNAF));
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(precomp_storage); i++) {
EC_POINT_free(precomp_storage[i]);
}
OPENSSL_free(val_sub);
return ret;
}

正在加载...
取消
保存