Split bn_mod_inverse_ex into bn_mod_inverse_{general, odd}.
This is a step towards exposing |bn_mod_inverse_odd| for use outside of crypto/bn/gcd.c. Change-Id: I2968f1e43306c03775b3573a022edd92f4e91df2 Reviewed-on: https://boringssl-review.googlesource.com/9101 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This commit is contained in:
parent
10b09ad28e
commit
f9bdcc1108
499
crypto/bn/gcd.c
499
crypto/bn/gcd.c
@ -108,6 +108,8 @@
|
||||
|
||||
#include <openssl/bn.h>
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include <openssl/err.h>
|
||||
|
||||
#include "internal.h"
|
||||
@ -227,9 +229,11 @@ static int bn_mod_inverse_no_branch(BIGNUM *out, int *out_no_inverse,
|
||||
const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx);
|
||||
|
||||
static int bn_mod_inverse_ex(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||||
const BIGNUM *n, BN_CTX *ctx) {
|
||||
BIGNUM *A, *B, *X, *Y, *M, *D, *T;
|
||||
static int bn_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||||
const BIGNUM *n, BN_CTX *ctx) {
|
||||
assert(BN_is_odd(n));
|
||||
|
||||
BIGNUM *A, *B, *X, *Y;
|
||||
int ret = 0;
|
||||
int sign;
|
||||
|
||||
@ -239,11 +243,8 @@ static int bn_mod_inverse_ex(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||||
A = BN_CTX_get(ctx);
|
||||
B = BN_CTX_get(ctx);
|
||||
X = BN_CTX_get(ctx);
|
||||
D = BN_CTX_get(ctx);
|
||||
M = BN_CTX_get(ctx);
|
||||
Y = BN_CTX_get(ctx);
|
||||
T = BN_CTX_get(ctx);
|
||||
if (T == NULL) {
|
||||
if (Y == NULL) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -262,224 +263,92 @@ static int bn_mod_inverse_ex(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||||
* sign*Y*a == A (mod |n|).
|
||||
*/
|
||||
|
||||
if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS2 <= 32 ? 450 : 2048))) {
|
||||
/* Binary inversion algorithm; requires odd modulus.
|
||||
* This is faster than the general algorithm if the modulus
|
||||
* is sufficiently small (about 400 .. 500 bits on 32-bit
|
||||
* sytems, but much more on 64-bit systems) */
|
||||
int shift;
|
||||
/* Binary inversion algorithm; requires odd modulus. This is faster than the
|
||||
* general algorithm if the modulus is sufficiently small (about 400 .. 500
|
||||
* bits on 32-bit systems, but much more on 64-bit systems) */
|
||||
int shift;
|
||||
|
||||
while (!BN_is_zero(B)) {
|
||||
/* 0 < B < |n|,
|
||||
* 0 < A <= |n|,
|
||||
* (1) -sign*X*a == B (mod |n|),
|
||||
* (2) sign*Y*a == A (mod |n|) */
|
||||
while (!BN_is_zero(B)) {
|
||||
/* 0 < B < |n|,
|
||||
* 0 < A <= |n|,
|
||||
* (1) -sign*X*a == B (mod |n|),
|
||||
* (2) sign*Y*a == A (mod |n|) */
|
||||
|
||||
/* Now divide B by the maximum possible power of two in the integers,
|
||||
* and divide X by the same value mod |n|.
|
||||
* When we're done, (1) still holds. */
|
||||
shift = 0;
|
||||
while (!BN_is_bit_set(B, shift)) {
|
||||
/* note that 0 < B */
|
||||
shift++;
|
||||
/* Now divide B by the maximum possible power of two in the integers,
|
||||
* and divide X by the same value mod |n|.
|
||||
* When we're done, (1) still holds. */
|
||||
shift = 0;
|
||||
while (!BN_is_bit_set(B, shift)) {
|
||||
/* note that 0 < B */
|
||||
shift++;
|
||||
|
||||
if (BN_is_odd(X)) {
|
||||
if (!BN_uadd(X, X, n)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
/* now X is even, so we can easily divide it by two */
|
||||
if (!BN_rshift1(X, X)) {
|
||||
if (BN_is_odd(X)) {
|
||||
if (!BN_uadd(X, X, n)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (shift > 0) {
|
||||
if (!BN_rshift(B, B, shift)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same for A and Y. Afterwards, (2) still holds. */
|
||||
shift = 0;
|
||||
while (!BN_is_bit_set(A, shift)) {
|
||||
/* note that 0 < A */
|
||||
shift++;
|
||||
|
||||
if (BN_is_odd(Y)) {
|
||||
if (!BN_uadd(Y, Y, n)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
/* now Y is even */
|
||||
if (!BN_rshift1(Y, Y)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (shift > 0) {
|
||||
if (!BN_rshift(A, A, shift)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* We still have (1) and (2).
|
||||
* Both A and B are odd.
|
||||
* The following computations ensure that
|
||||
*
|
||||
* 0 <= B < |n|,
|
||||
* 0 < A < |n|,
|
||||
* (1) -sign*X*a == B (mod |n|),
|
||||
* (2) sign*Y*a == A (mod |n|),
|
||||
*
|
||||
* and that either A or B is even in the next iteration. */
|
||||
if (BN_ucmp(B, A) >= 0) {
|
||||
/* -sign*(X + Y)*a == B - A (mod |n|) */
|
||||
if (!BN_uadd(X, X, Y)) {
|
||||
goto err;
|
||||
}
|
||||
/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
|
||||
* actually makes the algorithm slower */
|
||||
if (!BN_usub(B, B, A)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
/* sign*(X + Y)*a == A - B (mod |n|) */
|
||||
if (!BN_uadd(Y, Y, X)) {
|
||||
goto err;
|
||||
}
|
||||
/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
|
||||
if (!BN_usub(A, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
/* now X is even, so we can easily divide it by two */
|
||||
if (!BN_rshift1(X, X)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (shift > 0) {
|
||||
if (!BN_rshift(B, B, shift)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* general inversion algorithm */
|
||||
|
||||
while (!BN_is_zero(B)) {
|
||||
BIGNUM *tmp;
|
||||
/* Same for A and Y. Afterwards, (2) still holds. */
|
||||
shift = 0;
|
||||
while (!BN_is_bit_set(A, shift)) {
|
||||
/* note that 0 < A */
|
||||
shift++;
|
||||
|
||||
/*
|
||||
* 0 < B < A,
|
||||
* (*) -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|) */
|
||||
|
||||
/* (D, M) := (A/B, A%B) ... */
|
||||
if (BN_num_bits(A) == BN_num_bits(B)) {
|
||||
if (!BN_one(D)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_sub(M, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
|
||||
/* A/B is 1, 2, or 3 */
|
||||
if (!BN_lshift1(T, B)) {
|
||||
goto err;
|
||||
}
|
||||
if (BN_ucmp(A, T) < 0) {
|
||||
/* A < 2*B, so D=1 */
|
||||
if (!BN_one(D)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_sub(M, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
/* A >= 2*B, so D=2 or D=3 */
|
||||
if (!BN_sub(M, A, T)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_add(D, T, B)) {
|
||||
goto err; /* use D (:= 3*B) as temp */
|
||||
}
|
||||
if (BN_ucmp(A, D) < 0) {
|
||||
/* A < 3*B, so D=2 */
|
||||
if (!BN_set_word(D, 2)) {
|
||||
goto err;
|
||||
}
|
||||
/* M (= A - 2*B) already has the correct value */
|
||||
} else {
|
||||
/* only D=3 remains */
|
||||
if (!BN_set_word(D, 3)) {
|
||||
goto err;
|
||||
}
|
||||
/* currently M = A - 2*B, but we need M = A - 3*B */
|
||||
if (!BN_sub(M, M, B)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (!BN_div(D, M, A, B, ctx)) {
|
||||
if (BN_is_odd(Y)) {
|
||||
if (!BN_uadd(Y, Y, n)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now
|
||||
* A = D*B + M;
|
||||
* thus we have
|
||||
* (**) sign*Y*a == D*B + M (mod |n|). */
|
||||
|
||||
tmp = A; /* keep the BIGNUM object, the value does not matter */
|
||||
|
||||
/* (A, B) := (B, A mod B) ... */
|
||||
A = B;
|
||||
B = M;
|
||||
/* ... so we have 0 <= B < A again */
|
||||
|
||||
/* Since the former M is now B and the former B is now A,
|
||||
* (**) translates into
|
||||
* sign*Y*a == D*A + B (mod |n|),
|
||||
* i.e.
|
||||
* sign*Y*a - D*A == B (mod |n|).
|
||||
* Similarly, (*) translates into
|
||||
* -sign*X*a == A (mod |n|).
|
||||
*
|
||||
* Thus,
|
||||
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
||||
* i.e.
|
||||
* sign*(Y + D*X)*a == B (mod |n|).
|
||||
*
|
||||
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
* Note that X and Y stay non-negative all the time. */
|
||||
|
||||
/* most of the time D is very small, so we can optimize tmp := D*X+Y */
|
||||
if (BN_is_one(D)) {
|
||||
if (!BN_add(tmp, X, Y)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (BN_is_word(D, 2)) {
|
||||
if (!BN_lshift1(tmp, X)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (BN_is_word(D, 4)) {
|
||||
if (!BN_lshift(tmp, X, 2)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (D->top == 1) {
|
||||
if (!BN_copy(tmp, X)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_mul_word(tmp, D->d[0])) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_mul(tmp, D, X, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (!BN_add(tmp, tmp, Y)) {
|
||||
goto err;
|
||||
}
|
||||
/* now Y is even */
|
||||
if (!BN_rshift1(Y, Y)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (shift > 0) {
|
||||
if (!BN_rshift(A, A, shift)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
M = Y; /* keep the BIGNUM object, the value does not matter */
|
||||
Y = X;
|
||||
X = tmp;
|
||||
sign = -sign;
|
||||
/* We still have (1) and (2).
|
||||
* Both A and B are odd.
|
||||
* The following computations ensure that
|
||||
*
|
||||
* 0 <= B < |n|,
|
||||
* 0 < A < |n|,
|
||||
* (1) -sign*X*a == B (mod |n|),
|
||||
* (2) sign*Y*a == A (mod |n|),
|
||||
*
|
||||
* and that either A or B is even in the next iteration. */
|
||||
if (BN_ucmp(B, A) >= 0) {
|
||||
/* -sign*(X + Y)*a == B - A (mod |n|) */
|
||||
if (!BN_uadd(X, X, Y)) {
|
||||
goto err;
|
||||
}
|
||||
/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
|
||||
* actually makes the algorithm slower */
|
||||
if (!BN_usub(B, B, A)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
/* sign*(X + Y)*a == A - B (mod |n|) */
|
||||
if (!BN_uadd(Y, Y, X)) {
|
||||
goto err;
|
||||
}
|
||||
/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
|
||||
if (!BN_usub(A, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -520,6 +389,216 @@ err:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse,
|
||||
const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx) {
|
||||
BIGNUM *A, *B, *X, *Y, *M, *D, *T;
|
||||
int ret = 0;
|
||||
int sign;
|
||||
|
||||
*out_no_inverse = 0;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
A = BN_CTX_get(ctx);
|
||||
B = BN_CTX_get(ctx);
|
||||
X = BN_CTX_get(ctx);
|
||||
D = BN_CTX_get(ctx);
|
||||
M = BN_CTX_get(ctx);
|
||||
Y = BN_CTX_get(ctx);
|
||||
T = BN_CTX_get(ctx);
|
||||
if (T == NULL) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
BIGNUM *R = out;
|
||||
|
||||
BN_zero(Y);
|
||||
if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
|
||||
goto err;
|
||||
}
|
||||
A->neg = 0;
|
||||
sign = -1;
|
||||
/* From B = a mod |n|, A = |n| it follows that
|
||||
*
|
||||
* 0 <= B < A,
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
*/
|
||||
|
||||
/* general inversion algorithm */
|
||||
|
||||
while (!BN_is_zero(B)) {
|
||||
BIGNUM *tmp;
|
||||
|
||||
/*
|
||||
* 0 < B < A,
|
||||
* (*) -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|) */
|
||||
|
||||
/* (D, M) := (A/B, A%B) ... */
|
||||
if (BN_num_bits(A) == BN_num_bits(B)) {
|
||||
if (!BN_one(D)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_sub(M, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
|
||||
/* A/B is 1, 2, or 3 */
|
||||
if (!BN_lshift1(T, B)) {
|
||||
goto err;
|
||||
}
|
||||
if (BN_ucmp(A, T) < 0) {
|
||||
/* A < 2*B, so D=1 */
|
||||
if (!BN_one(D)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_sub(M, A, B)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
/* A >= 2*B, so D=2 or D=3 */
|
||||
if (!BN_sub(M, A, T)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_add(D, T, B)) {
|
||||
goto err; /* use D (:= 3*B) as temp */
|
||||
}
|
||||
if (BN_ucmp(A, D) < 0) {
|
||||
/* A < 3*B, so D=2 */
|
||||
if (!BN_set_word(D, 2)) {
|
||||
goto err;
|
||||
}
|
||||
/* M (= A - 2*B) already has the correct value */
|
||||
} else {
|
||||
/* only D=3 remains */
|
||||
if (!BN_set_word(D, 3)) {
|
||||
goto err;
|
||||
}
|
||||
/* currently M = A - 2*B, but we need M = A - 3*B */
|
||||
if (!BN_sub(M, M, B)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (!BN_div(D, M, A, B, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now
|
||||
* A = D*B + M;
|
||||
* thus we have
|
||||
* (**) sign*Y*a == D*B + M (mod |n|). */
|
||||
|
||||
tmp = A; /* keep the BIGNUM object, the value does not matter */
|
||||
|
||||
/* (A, B) := (B, A mod B) ... */
|
||||
A = B;
|
||||
B = M;
|
||||
/* ... so we have 0 <= B < A again */
|
||||
|
||||
/* Since the former M is now B and the former B is now A,
|
||||
* (**) translates into
|
||||
* sign*Y*a == D*A + B (mod |n|),
|
||||
* i.e.
|
||||
* sign*Y*a - D*A == B (mod |n|).
|
||||
* Similarly, (*) translates into
|
||||
* -sign*X*a == A (mod |n|).
|
||||
*
|
||||
* Thus,
|
||||
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
||||
* i.e.
|
||||
* sign*(Y + D*X)*a == B (mod |n|).
|
||||
*
|
||||
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
* Note that X and Y stay non-negative all the time. */
|
||||
|
||||
/* most of the time D is very small, so we can optimize tmp := D*X+Y */
|
||||
if (BN_is_one(D)) {
|
||||
if (!BN_add(tmp, X, Y)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (BN_is_word(D, 2)) {
|
||||
if (!BN_lshift1(tmp, X)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (BN_is_word(D, 4)) {
|
||||
if (!BN_lshift(tmp, X, 2)) {
|
||||
goto err;
|
||||
}
|
||||
} else if (D->top == 1) {
|
||||
if (!BN_copy(tmp, X)) {
|
||||
goto err;
|
||||
}
|
||||
if (!BN_mul_word(tmp, D->d[0])) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_mul(tmp, D, X, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (!BN_add(tmp, tmp, Y)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
M = Y; /* keep the BIGNUM object, the value does not matter */
|
||||
Y = X;
|
||||
X = tmp;
|
||||
sign = -sign;
|
||||
}
|
||||
|
||||
if (!BN_is_one(A)) {
|
||||
*out_no_inverse = 1;
|
||||
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* The while loop (Euclid's algorithm) ends when
|
||||
* A == gcd(a,n);
|
||||
* we have
|
||||
* sign*Y*a == A (mod |n|),
|
||||
* where Y is non-negative. */
|
||||
|
||||
if (sign < 0) {
|
||||
if (!BN_sub(Y, n, Y)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
/* Now Y*a == A (mod |n|). */
|
||||
|
||||
/* Y*a == 1 (mod |n|) */
|
||||
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
||||
if (!BN_copy(R, Y)) {
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (!BN_nnmod(R, Y, n, ctx)) {
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int bn_mod_inverse_ex(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||||
const BIGNUM *n, BN_CTX *ctx) {
|
||||
if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS2 <= 32 ? 450 : 2048))) {
|
||||
return bn_mod_inverse_odd(out, out_no_inverse, a, n, ctx);
|
||||
}
|
||||
return bn_mod_inverse_general(out, out_no_inverse, a, n, ctx);
|
||||
}
|
||||
|
||||
BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx) {
|
||||
int no_inverse;
|
||||
|
Loading…
Reference in New Issue
Block a user