Implement Enhanced Miller-Rabin primality test for FIPS.

Change-Id: I4968df9f37b450f0799ac7ca19900c7b909e7f6d
Reviewed-on: https://boringssl-review.googlesource.com/15127
Reviewed-by: Steven Valdez <svaldez@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This commit is contained in:
Steven Valdez 2017-04-17 16:03:38 -04:00 committed by CQ bot account: commit-bot@chromium.org
parent 6c7f6bfa97
commit fc9f10f8fb
2 changed files with 153 additions and 95 deletions

View File

@ -342,8 +342,6 @@ static int BN_prime_checks_for_size(int bits) {
return 28; return 28;
} }
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
static int probable_prime(BIGNUM *rnd, int bits); static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
const BIGNUM *rem, BN_CTX *ctx); const BIGNUM *rem, BN_CTX *ctx);
@ -486,11 +484,8 @@ int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, BN_GENCB *c
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
int do_trial_division, BN_GENCB *cb) { int do_trial_division, BN_GENCB *cb) {
int i, j, ret = -1; int i, ret = -1;
int k;
BN_CTX *ctx = NULL; BN_CTX *ctx = NULL;
BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
BN_MONT_CTX *mont = NULL;
const BIGNUM *A = NULL; const BIGNUM *A = NULL;
if (BN_cmp(a, BN_value_one()) <= 0) { if (BN_cmp(a, BN_value_one()) <= 0) {
@ -542,65 +537,12 @@ int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
A = a; A = a;
} }
A1 = BN_CTX_get(ctx); enum bn_primality_result_t result;
A1_odd = BN_CTX_get(ctx); if (!BN_enhanced_miller_rabin_primality_test(&result, A, checks, ctx, cb)) {
check = BN_CTX_get(ctx);
if (check == NULL) {
goto err; goto err;
} }
/* compute A1 := A - 1 */ ret = (result == bn_probably_prime);
if (!BN_copy(A1, A)) {
goto err;
}
if (!BN_sub_word(A1, 1)) {
goto err;
}
if (BN_is_zero(A1)) {
ret = 0;
goto err;
}
/* write A1 as A1_odd * 2^k */
k = 1;
while (!BN_is_bit_set(A1, k)) {
k++;
}
if (!BN_rshift(A1_odd, A1, k)) {
goto err;
}
/* Montgomery setup for computations mod A */
mont = BN_MONT_CTX_new();
if (mont == NULL) {
goto err;
}
if (!BN_MONT_CTX_set(mont, A, ctx)) {
goto err;
}
for (i = 0; i < checks; i++) {
if (!BN_pseudo_rand_range(check, A1)) {
goto err;
}
if (!BN_add_word(check, 1)) {
goto err;
}
/* now 1 <= check < A */
j = witness(check, A, A1, A1_odd, k, ctx, mont);
if (j == -1) {
goto err;
}
if (j) {
ret = 0;
goto err;
}
if (!BN_GENCB_call(cb, 1, i)) {
goto err;
}
}
ret = 1;
err: err:
if (ctx != NULL) { if (ctx != NULL) {
@ -609,6 +551,139 @@ err:
BN_CTX_free(ctx); BN_CTX_free(ctx);
} }
} }
return ret;
}
/* Implement the Enhanced Miller-Rabin Primality Test (FIPS 186-4 C.3.2). */
int BN_enhanced_miller_rabin_primality_test(
enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
BN_CTX *ctx, BN_GENCB *cb) {
int ret = 0;
BN_MONT_CTX *mont = NULL;
if (out_result == NULL) {
goto err;
}
BIGNUM *w1 = BN_CTX_get(ctx);
if (w1 == NULL ||
!BN_copy(w1, w) ||
!BN_sub_word(w1, 1)) {
goto err;
}
/* Write w1 as m*2^a (Steps 1 and 2). */
int a = 0;
while (!BN_is_bit_set(w1, a)) {
a++;
}
BIGNUM *m = BN_CTX_get(ctx);
if (m == NULL ||
!BN_rshift(m, w1, a)) {
goto err;
}
BIGNUM *b = BN_CTX_get(ctx);
BIGNUM *g = BN_CTX_get(ctx);
BIGNUM *z = BN_CTX_get(ctx);
BIGNUM *x = BN_CTX_get(ctx);
BIGNUM *x1 = BN_CTX_get(ctx);
if (b == NULL ||
g == NULL ||
z == NULL ||
x == NULL ||
x1 == NULL) {
goto err;
}
/* Montgomery setup for computations mod A */
mont = BN_MONT_CTX_new();
if (mont == NULL) {
goto err;
}
if (!BN_MONT_CTX_set(mont, w, ctx)) {
goto err;
}
/* The following loop performs in inner iteration of the Enhanced Miller-Rabin
* Primality test (Step 4). */
for (int i = 1; i <= iterations; i++) {
/* Step 4.1-4.2 */
if (!BN_rand_range_ex(b, 2, w1)) {
goto err;
}
/* Step 4.3-4.4 */
if (!BN_gcd(g, b, w, ctx)) {
goto err;
}
if (BN_cmp_word(g, 1) > 0) {
*out_result = bn_composite;
ret = 1;
goto err;
}
/* Step 4.5 */
if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
goto err;
}
/* Step 4.6 */
if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
goto loop;
}
/* Step 4.7 */
for (int j = 1; j < a; j++) {
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
}
if (BN_cmp(z, w1) == 0) {
goto loop;
}
if (BN_is_one(z)) {
goto composite;
}
}
/* Step 4.8-4.9 */
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
}
/* Step 4.10-4.11 */
if (!BN_is_one(z) && !BN_copy(x, z)) {
goto err;
}
composite:
/* Step 4.12-4.14 */
if (!BN_copy(x1, x) ||
!BN_sub_word(x1, 1) ||
!BN_gcd(g, x1, w, ctx)) {
goto err;
}
if (BN_cmp_word(g, 1) > 0) {
*out_result = bn_composite;
} else {
*out_result = bn_non_prime_power_composite;
}
ret = 1;
goto err;
loop:
/* Step 4.15 */
if (!BN_GENCB_call(cb, 1, i)) {
goto err;
}
}
*out_result = bn_probably_prime;
ret = 1;
err:
if (mont != NULL) { if (mont != NULL) {
BN_MONT_CTX_free(mont); BN_MONT_CTX_free(mont);
} }
@ -616,39 +691,6 @@ err:
return ret; return ret;
} }
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
const BIGNUM *a1_odd, int k, BN_CTX *ctx,
BN_MONT_CTX *mont) {
if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) { /* w := w^a1_odd mod a */
return -1;
}
if (BN_is_one(w)) {
return 0; /* probably prime */
}
if (BN_cmp(w, a1) == 0) {
return 0; /* w == -1 (mod a), 'a' is probably prime */
}
while (--k) {
if (!BN_mod_mul(w, w, w, a, ctx)) { /* w := w^2 mod a */
return -1;
}
if (BN_is_one(w)) {
return 1; /* 'a' is composite, otherwise a previous 'w' would
* have been == -1 (mod 'a') */
}
if (BN_cmp(w, a1) == 0) {
return 0; /* w == -1 (mod a), 'a' is probably prime */
}
}
/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
* and it is neither -1 nor +1 -- so 'a' cannot be prime */
return 1;
}
static int probable_prime(BIGNUM *rnd, int bits) { static int probable_prime(BIGNUM *rnd, int bits) {
int i; int i;
uint16_t mods[NUMPRIMES]; uint16_t mods[NUMPRIMES];

View File

@ -707,6 +707,22 @@ OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
* Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */ * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
#define BN_prime_checks 0 #define BN_prime_checks 0
/* bn_primality_result_t enumerates the outcomes of primality-testing. */
enum bn_primality_result_t {
bn_probably_prime,
bn_composite,
bn_non_prime_power_composite,
};
/* BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
* number using the Enhanced Miller-Rabin test with |iterations| iterations and
* returns the result in |out_result|. It returns one on success and zero on
* failure. If |cb| is not NULL, then it is called during each iteration of the
* primality test. */
int BN_enhanced_miller_rabin_primality_test(
enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
BN_CTX *ctx, BN_GENCB *cb);
/* BN_primality_test sets |*is_probably_prime| to one if |candidate| is /* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
* probably a prime number by the Miller-Rabin test or zero if it's certainly * probably a prime number by the Miller-Rabin test or zero if it's certainly
* not. * not.