diff --git a/crypto/fipsmodule/ec/ec_montgomery.c b/crypto/fipsmodule/ec/ec_montgomery.c index 3fb67e26..8f277b07 100644 --- a/crypto/fipsmodule/ec/ec_montgomery.c +++ b/crypto/fipsmodule/ec/ec_montgomery.c @@ -220,15 +220,220 @@ static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, return 1; } +void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out, + const EC_RAW_POINT *a, const EC_RAW_POINT *b) { + if (a == b) { + ec_GFp_mont_dbl(group, out, a); + return; + } + + // The method is taken from: + // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl + // + // Coq transcription and correctness proof: + // + // + EC_FELEM x_out, y_out, z_out; + BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); + BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); + + // z1z1 = z1z1 = z1**2 + EC_FELEM z1z1; + ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z); + + // z2z2 = z2**2 + EC_FELEM z2z2; + ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z); + + // u1 = x1*z2z2 + EC_FELEM u1; + ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2); + + // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 + EC_FELEM two_z1z2; + ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); + ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2); + ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); + ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); + + // s1 = y1 * z2**3 + EC_FELEM s1; + ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2); + ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y); + + // u2 = x2*z1z1 + EC_FELEM u2; + ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1); + + // h = u2 - u1 + EC_FELEM h; + ec_felem_sub(group, &h, &u2, &u1); + + BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); + + // z_out = two_z1z2 * h + ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2); + + // z1z1z1 = z1 * z1z1 + EC_FELEM z1z1z1; + ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1); + + // s2 = y2 * z1**3 + EC_FELEM s2; + ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1); + + // r = (s2 - s1)*2 + EC_FELEM r; + ec_felem_sub(group, &r, &s2, &s1); + ec_felem_add(group, &r, &r, &r); + + BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); + + // This case will never occur in the constant-time |ec_GFp_mont_mul|. + if (!xneq && !yneq && z1nz && z2nz) { + ec_GFp_mont_dbl(group, out, a); + return; + } + + // I = (2h)**2 + EC_FELEM i; + ec_felem_add(group, &i, &h, &h); + ec_GFp_mont_felem_sqr(group, &i, &i); + + // J = h * I + EC_FELEM j; + ec_GFp_mont_felem_mul(group, &j, &h, &i); + + // V = U1 * I + EC_FELEM v; + ec_GFp_mont_felem_mul(group, &v, &u1, &i); + + // x_out = r**2 - J - 2V + ec_GFp_mont_felem_sqr(group, &x_out, &r); + ec_felem_sub(group, &x_out, &x_out, &j); + ec_felem_sub(group, &x_out, &x_out, &v); + ec_felem_sub(group, &x_out, &x_out, &v); + + // y_out = r(V-x_out) - 2 * s1 * J + ec_felem_sub(group, &y_out, &v, &x_out); + ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r); + EC_FELEM s1j; + ec_GFp_mont_felem_mul(group, &s1j, &s1, &j); + ec_felem_sub(group, &y_out, &y_out, &s1j); + ec_felem_sub(group, &y_out, &y_out, &s1j); + + ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); + ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); + ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); + ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); + ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); + ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); +} + +void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_RAW_POINT *a) { + if (group->a_is_minus3) { + // The method is taken from: + // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + // + // Coq transcription and correctness proof: + // + // + EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; + // delta = z^2 + ec_GFp_mont_felem_sqr(group, &delta, &a->Z); + // gamma = y^2 + ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); + // beta = x*gamma + ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); + + // alpha = 3*(x-delta)*(x+delta) + ec_felem_sub(group, &ftmp, &a->X, &delta); + ec_felem_add(group, &ftmp2, &a->X, &delta); + + ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); + ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); + ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2); + + // x' = alpha^2 - 8*beta + ec_GFp_mont_felem_sqr(group, &r->X, &alpha); + ec_felem_add(group, &fourbeta, &beta, &beta); + ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); + ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); + ec_felem_sub(group, &r->X, &r->X, &tmptmp); + + // z' = (y + z)^2 - gamma - delta + ec_felem_add(group, &delta, &gamma, &delta); + ec_felem_add(group, &ftmp, &a->Y, &a->Z); + ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp); + ec_felem_sub(group, &r->Z, &r->Z, &delta); + + // y' = alpha*(4*beta - x') - 8*gamma^2 + ec_felem_sub(group, &r->Y, &fourbeta, &r->X); + ec_felem_add(group, &gamma, &gamma, &gamma); + ec_GFp_mont_felem_sqr(group, &gamma, &gamma); + ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y); + ec_felem_add(group, &gamma, &gamma, &gamma); + ec_felem_sub(group, &r->Y, &r->Y, &gamma); + } else { + // The method is taken from: + // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl + // + // Coq transcription and correctness proof: + // + // + EC_FELEM xx, yy, yyyy, zz; + ec_GFp_mont_felem_sqr(group, &xx, &a->X); + ec_GFp_mont_felem_sqr(group, &yy, &a->Y); + ec_GFp_mont_felem_sqr(group, &yyyy, &yy); + ec_GFp_mont_felem_sqr(group, &zz, &a->Z); + + // s = 2*((x_in + yy)^2 - xx - yyyy) + EC_FELEM s; + ec_felem_add(group, &s, &a->X, &yy); + ec_GFp_mont_felem_sqr(group, &s, &s); + ec_felem_sub(group, &s, &s, &xx); + ec_felem_sub(group, &s, &s, &yyyy); + ec_felem_add(group, &s, &s, &s); + + // m = 3*xx + a*zz^2 + EC_FELEM m; + ec_GFp_mont_felem_sqr(group, &m, &zz); + ec_GFp_mont_felem_mul(group, &m, &group->a, &m); + ec_felem_add(group, &m, &m, &xx); + ec_felem_add(group, &m, &m, &xx); + ec_felem_add(group, &m, &m, &xx); + + // x_out = m^2 - 2*s + ec_GFp_mont_felem_sqr(group, &r->X, &m); + ec_felem_sub(group, &r->X, &r->X, &s); + ec_felem_sub(group, &r->X, &r->X, &s); + + // z_out = (y_in + z_in)^2 - yy - zz + ec_felem_add(group, &r->Z, &a->Y, &a->Z); + ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z); + ec_felem_sub(group, &r->Z, &r->Z, &yy); + ec_felem_sub(group, &r->Z, &r->Z, &zz); + + // y_out = m*(s-x_out) - 8*yyyy + ec_felem_add(group, &yyyy, &yyyy, &yyyy); + ec_felem_add(group, &yyyy, &yyyy, &yyyy); + ec_felem_add(group, &yyyy, &yyyy, &yyyy); + ec_felem_sub(group, &r->Y, &s, &r->X); + ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m); + ec_felem_sub(group, &r->Y, &r->Y, &yyyy); + } +} + DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { out->group_init = ec_GFp_mont_group_init; out->group_finish = ec_GFp_mont_group_finish; out->group_set_curve = ec_GFp_mont_group_set_curve; out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; - out->add = ec_GFp_simple_add; - out->dbl = ec_GFp_simple_dbl; - out->mul = ec_GFp_simple_mul; - out->mul_public = ec_GFp_simple_mul_public; + out->add = ec_GFp_mont_add; + out->dbl = ec_GFp_mont_dbl; + out->mul = ec_GFp_mont_mul; + out->mul_public = ec_GFp_mont_mul_public; out->felem_mul = ec_GFp_mont_felem_mul; out->felem_sqr = ec_GFp_mont_felem_sqr; out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; diff --git a/crypto/fipsmodule/ec/internal.h b/crypto/fipsmodule/ec/internal.h index e51109a2..e62ceb8d 100644 --- a/crypto/fipsmodule/ec/internal.h +++ b/crypto/fipsmodule/ec/internal.h @@ -292,9 +292,9 @@ OPENSSL_EXPORT int ec_point_mul_scalar_public( const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar, const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx); -void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, - const EC_SCALAR *p_scalar); +void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, + const EC_SCALAR *p_scalar); // ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of // |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of @@ -307,9 +307,9 @@ void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r, void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, const EC_SCALAR *scalar, size_t bits, int w); -void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, - const EC_SCALAR *p_scalar); +void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, + const EC_SCALAR *p_scalar); // method functions in simple.c int ec_GFp_simple_group_init(EC_GROUP *); @@ -325,10 +325,9 @@ void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *); int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *, const BIGNUM *x, const BIGNUM *y); -void ec_GFp_simple_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a, - const EC_RAW_POINT *b); -void ec_GFp_simple_dbl(const EC_GROUP *, EC_RAW_POINT *r, - const EC_RAW_POINT *a); +void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a, + const EC_RAW_POINT *b); +void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a); void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *); int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *); int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *); diff --git a/crypto/fipsmodule/ec/simple.c b/crypto/fipsmodule/ec/simple.c index 5c637118..bf4aa4f2 100644 --- a/crypto/fipsmodule/ec/simple.c +++ b/crypto/fipsmodule/ec/simple.c @@ -212,222 +212,6 @@ int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, return 1; } -void ec_GFp_simple_add(const EC_GROUP *group, EC_RAW_POINT *out, - const EC_RAW_POINT *a, const EC_RAW_POINT *b) { - if (a == b) { - ec_GFp_simple_dbl(group, out, a); - return; - } - - - // The method is taken from: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl - // - // Coq transcription and correctness proof: - // - // - void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, - const EC_FELEM *b) = group->meth->felem_mul; - void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = - group->meth->felem_sqr; - - EC_FELEM x_out, y_out, z_out; - BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); - BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); - - // z1z1 = z1z1 = z1**2 - EC_FELEM z1z1; - felem_sqr(group, &z1z1, &a->Z); - - // z2z2 = z2**2 - EC_FELEM z2z2; - felem_sqr(group, &z2z2, &b->Z); - - // u1 = x1*z2z2 - EC_FELEM u1; - felem_mul(group, &u1, &a->X, &z2z2); - - // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 - EC_FELEM two_z1z2; - ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); - felem_sqr(group, &two_z1z2, &two_z1z2); - ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); - ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); - - // s1 = y1 * z2**3 - EC_FELEM s1; - felem_mul(group, &s1, &b->Z, &z2z2); - felem_mul(group, &s1, &s1, &a->Y); - - // u2 = x2*z1z1 - EC_FELEM u2; - felem_mul(group, &u2, &b->X, &z1z1); - - // h = u2 - u1 - EC_FELEM h; - ec_felem_sub(group, &h, &u2, &u1); - - BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); - - // z_out = two_z1z2 * h - felem_mul(group, &z_out, &h, &two_z1z2); - - // z1z1z1 = z1 * z1z1 - EC_FELEM z1z1z1; - felem_mul(group, &z1z1z1, &a->Z, &z1z1); - - // s2 = y2 * z1**3 - EC_FELEM s2; - felem_mul(group, &s2, &b->Y, &z1z1z1); - - // r = (s2 - s1)*2 - EC_FELEM r; - ec_felem_sub(group, &r, &s2, &s1); - ec_felem_add(group, &r, &r, &r); - - BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); - - // This case will never occur in the constant-time |ec_GFp_simple_mul|. - if (!xneq && !yneq && z1nz && z2nz) { - ec_GFp_simple_dbl(group, out, a); - return; - } - - // I = (2h)**2 - EC_FELEM i; - ec_felem_add(group, &i, &h, &h); - felem_sqr(group, &i, &i); - - // J = h * I - EC_FELEM j; - felem_mul(group, &j, &h, &i); - - // V = U1 * I - EC_FELEM v; - felem_mul(group, &v, &u1, &i); - - // x_out = r**2 - J - 2V - felem_sqr(group, &x_out, &r); - ec_felem_sub(group, &x_out, &x_out, &j); - ec_felem_sub(group, &x_out, &x_out, &v); - ec_felem_sub(group, &x_out, &x_out, &v); - - // y_out = r(V-x_out) - 2 * s1 * J - ec_felem_sub(group, &y_out, &v, &x_out); - felem_mul(group, &y_out, &y_out, &r); - EC_FELEM s1j; - felem_mul(group, &s1j, &s1, &j); - ec_felem_sub(group, &y_out, &y_out, &s1j); - ec_felem_sub(group, &y_out, &y_out, &s1j); - - ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); - ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); - ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); - ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); - ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); - ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); -} - -void ec_GFp_simple_dbl(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_RAW_POINT *a) { - void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, - const EC_FELEM *b) = group->meth->felem_mul; - void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = - group->meth->felem_sqr; - - if (group->a_is_minus3) { - // The method is taken from: - // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b - // - // Coq transcription and correctness proof: - // - // - EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; - // delta = z^2 - felem_sqr(group, &delta, &a->Z); - // gamma = y^2 - felem_sqr(group, &gamma, &a->Y); - // beta = x*gamma - felem_mul(group, &beta, &a->X, &gamma); - - // alpha = 3*(x-delta)*(x+delta) - ec_felem_sub(group, &ftmp, &a->X, &delta); - ec_felem_add(group, &ftmp2, &a->X, &delta); - - ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); - ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); - felem_mul(group, &alpha, &ftmp, &ftmp2); - - // x' = alpha^2 - 8*beta - felem_sqr(group, &r->X, &alpha); - ec_felem_add(group, &fourbeta, &beta, &beta); - ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); - ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); - ec_felem_sub(group, &r->X, &r->X, &tmptmp); - - // z' = (y + z)^2 - gamma - delta - ec_felem_add(group, &delta, &gamma, &delta); - ec_felem_add(group, &ftmp, &a->Y, &a->Z); - felem_sqr(group, &r->Z, &ftmp); - ec_felem_sub(group, &r->Z, &r->Z, &delta); - - // y' = alpha*(4*beta - x') - 8*gamma^2 - ec_felem_sub(group, &r->Y, &fourbeta, &r->X); - ec_felem_add(group, &gamma, &gamma, &gamma); - felem_sqr(group, &gamma, &gamma); - felem_mul(group, &r->Y, &alpha, &r->Y); - ec_felem_add(group, &gamma, &gamma, &gamma); - ec_felem_sub(group, &r->Y, &r->Y, &gamma); - } else { - // The method is taken from: - // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl - // - // Coq transcription and correctness proof: - // - // - EC_FELEM xx, yy, yyyy, zz; - felem_sqr(group, &xx, &a->X); - felem_sqr(group, &yy, &a->Y); - felem_sqr(group, &yyyy, &yy); - felem_sqr(group, &zz, &a->Z); - - // s = 2*((x_in + yy)^2 - xx - yyyy) - EC_FELEM s; - ec_felem_add(group, &s, &a->X, &yy); - felem_sqr(group, &s, &s); - ec_felem_sub(group, &s, &s, &xx); - ec_felem_sub(group, &s, &s, &yyyy); - ec_felem_add(group, &s, &s, &s); - - // m = 3*xx + a*zz^2 - EC_FELEM m; - felem_sqr(group, &m, &zz); - felem_mul(group, &m, &group->a, &m); - ec_felem_add(group, &m, &m, &xx); - ec_felem_add(group, &m, &m, &xx); - ec_felem_add(group, &m, &m, &xx); - - // x_out = m^2 - 2*s - felem_sqr(group, &r->X, &m); - ec_felem_sub(group, &r->X, &r->X, &s); - ec_felem_sub(group, &r->X, &r->X, &s); - - // z_out = (y_in + z_in)^2 - yy - zz - ec_felem_add(group, &r->Z, &a->Y, &a->Z); - felem_sqr(group, &r->Z, &r->Z); - ec_felem_sub(group, &r->Z, &r->Z, &yy); - ec_felem_sub(group, &r->Z, &r->Z, &zz); - - // y_out = m*(s-x_out) - 8*yyyy - ec_felem_add(group, &yyyy, &yyyy, &yyyy); - ec_felem_add(group, &yyyy, &yyyy, &yyyy); - ec_felem_add(group, &yyyy, &yyyy, &yyyy); - ec_felem_sub(group, &r->Y, &s, &r->X); - felem_mul(group, &r->Y, &r->Y, &m); - ec_felem_sub(group, &r->Y, &r->Y, &yyyy); - } -} - void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { ec_felem_neg(group, &point->Y, &point->Y); } diff --git a/crypto/fipsmodule/ec/simple_mul.c b/crypto/fipsmodule/ec/simple_mul.c index 93ed0a8f..e05f491a 100644 --- a/crypto/fipsmodule/ec/simple_mul.c +++ b/crypto/fipsmodule/ec/simple_mul.c @@ -21,12 +21,12 @@ #include "../../internal.h" -static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_RAW_POINT *p, - const EC_SCALAR *scalar) { +static void ec_GFp_mont_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_RAW_POINT *p, + const EC_SCALAR *scalar) { // This is a generic implementation for uncommon curves that not do not // warrant a tuned one. It uses unsigned digits so that the doubling case in - // |ec_GFp_simple_add| is always unreachable, erring on safety and simplicity. + // |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity. // Compute a table of the first 32 multiples of |p| (including infinity). EC_RAW_POINT precomp[32]; @@ -34,9 +34,9 @@ static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, ec_GFp_simple_point_copy(&precomp[1], p); for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) { if (j & 1) { - ec_GFp_simple_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); + ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); } else { - ec_GFp_simple_dbl(group, &precomp[j], &precomp[j / 2]); + ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]); } } @@ -45,7 +45,7 @@ static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, int r_is_at_infinity = 1; for (unsigned i = bits - 1; i < bits; i--) { if (!r_is_at_infinity) { - ec_GFp_simple_dbl(group, r, r); + ec_GFp_mont_dbl(group, r, r); } if (i % 5 == 0) { // Compute the next window value. @@ -70,7 +70,7 @@ static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { - ec_GFp_simple_add(group, r, r, &tmp); + ec_GFp_mont_add(group, r, r, &tmp); } } } @@ -79,21 +79,21 @@ static void ec_GFp_simple_mul_single(const EC_GROUP *group, EC_RAW_POINT *r, } } -void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, - const EC_SCALAR *p_scalar) { +void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, + const EC_SCALAR *p_scalar) { assert(g_scalar != NULL || p_scalar != NULL); if (p_scalar == NULL) { - ec_GFp_simple_mul_single(group, r, &group->generator->raw, g_scalar); + ec_GFp_mont_mul_single(group, r, &group->generator->raw, g_scalar); } else if (g_scalar == NULL) { - ec_GFp_simple_mul_single(group, r, p, p_scalar); + ec_GFp_mont_mul_single(group, r, p, p_scalar); } else { // Support constant-time two-point multiplication for compatibility. This // does not actually come up in keygen, ECDH, or ECDSA, so we implement it // the naive way. - ec_GFp_simple_mul_single(group, r, &group->generator->raw, g_scalar); + ec_GFp_mont_mul_single(group, r, &group->generator->raw, g_scalar); EC_RAW_POINT tmp; - ec_GFp_simple_mul_single(group, &tmp, p, p_scalar); - ec_GFp_simple_add(group, r, r, &tmp); + ec_GFp_mont_mul_single(group, &tmp, p, p_scalar); + ec_GFp_mont_add(group, r, r, &tmp); } } diff --git a/crypto/fipsmodule/ec/wnaf.c b/crypto/fipsmodule/ec/wnaf.c index 145caa0c..c0c28099 100644 --- a/crypto/fipsmodule/ec/wnaf.c +++ b/crypto/fipsmodule/ec/wnaf.c @@ -151,9 +151,9 @@ static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out, const EC_RAW_POINT *p, size_t len) { ec_GFp_simple_point_copy(&out[0], p); EC_RAW_POINT two_p; - ec_GFp_simple_dbl(group, &two_p, p); + ec_GFp_mont_dbl(group, &two_p, p); for (size_t i = 1; i < len; i++) { - ec_GFp_simple_add(group, &out[i], &out[i - 1], &two_p); + ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p); } } @@ -168,15 +168,15 @@ static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out, } } -// EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_simple_mul_public|. +// EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|. #define EC_WNAF_WINDOW_BITS 4 -// EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_simple_mul_public|. +// EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|. #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1)) -void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, - const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, - const EC_SCALAR *p_scalar) { +void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, + const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, + const EC_SCALAR *p_scalar) { size_t bits = BN_num_bits(&group->order); size_t wNAF_len = bits + 1; @@ -197,7 +197,7 @@ void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, int r_is_at_infinity = 1; for (size_t k = wNAF_len - 1; k < wNAF_len; k--) { if (!r_is_at_infinity) { - ec_GFp_simple_dbl(group, r, r); + ec_GFp_mont_dbl(group, r, r); } if (g_wNAF[k] != 0) { @@ -206,7 +206,7 @@ void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { - ec_GFp_simple_add(group, r, r, &tmp); + ec_GFp_mont_add(group, r, r, &tmp); } } @@ -216,7 +216,7 @@ void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { - ec_GFp_simple_add(group, r, r, &tmp); + ec_GFp_mont_add(group, r, r, &tmp); } } }