This patches vpaes-armv8.pl to add vpaes_ctr32_encrypt_blocks. CTR mode
is by far the most important mode these days. It should have access to
_vpaes_encrypt_2x, which gives a considerable speed boost. Also exclude
vpaes_ecb_* as they're not even used.
For iOS, this change is completely a no-op. iOS ARMv8 always has crypto
extensions, and we already statically drop all other AES
implementations.
Android ARMv8 is *not* required to have crypto extensions, but every
ARMv8 device I've seen has them. For those, it is a no-op
performance-wise and a win on size. vpaes appears to be about 5.6KiB
smaller than the tables. ARMv8 always makes SIMD (NEON) available, so we
can statically drop aes_nohw.
In theory, however, crypto-less Android ARMv8 is possible. Today such
chips get a variable-time AES. This CL fixes this, but the performance
story is complex.
The Raspberry Pi 3 is not Android but has a Cortex-A53 chip
without crypto extensions. (But the official images are 32-bit, so even
this is slightly artificial...) There, vpaes is a performance win.
Raspberry Pi 3, Model B+, Cortex-A53
Before:
Did 265000 AES-128-GCM (16 bytes) seal operations in 1003312us (264125.2 ops/sec): 4.2 MB/s
Did 44000 AES-128-GCM (256 bytes) seal operations in 1002141us (43906.0 ops/sec): 11.2 MB/s
Did 9394 AES-128-GCM (1350 bytes) seal operations in 1032104us (9101.8 ops/sec): 12.3 MB/s
Did 1562 AES-128-GCM (8192 bytes) seal operations in 1008982us (1548.1 ops/sec): 12.7 MB/s
After:
Did 277000 AES-128-GCM (16 bytes) seal operations in 1001884us (276479.1 ops/sec): 4.4 MB/s
Did 52000 AES-128-GCM (256 bytes) seal operations in 1001480us (51923.2 ops/sec): 13.3 MB/s
Did 11000 AES-128-GCM (1350 bytes) seal operations in 1007979us (10912.9 ops/sec): 14.7 MB/s
Did 2013 AES-128-GCM (8192 bytes) seal operations in 1085545us (1854.4 ops/sec): 15.2 MB/s
The Pixel 3 has a Cortex-A75 with crypto extensions, so it would never
run this code. However, artificially ignoring them gives another data
point (ARM documentation[*] suggests the extensions are still optional
on a Cortex-A75.) Sadly, vpaes no longer wins on perf over aes_nohw.
But, it is constant-time:
Pixel 3, AES/PMULL extensions ignored, Cortex-A75:
Before:
Did 2102000 AES-128-GCM (16 bytes) seal operations in 1000378us (2101205.7 ops/sec): 33.6 MB/s
Did 358000 AES-128-GCM (256 bytes) seal operations in 1002658us (357051.0 ops/sec): 91.4 MB/s
Did 75000 AES-128-GCM (1350 bytes) seal operations in 1012830us (74049.9 ops/sec): 100.0 MB/s
Did 13000 AES-128-GCM (8192 bytes) seal operations in 1036524us (12541.9 ops/sec): 102.7 MB/s
After:
Did 1453000 AES-128-GCM (16 bytes) seal operations in 1000213us (1452690.6 ops/sec): 23.2 MB/s
Did 285000 AES-128-GCM (256 bytes) seal operations in 1002227us (284366.7 ops/sec): 72.8 MB/s
Did 60000 AES-128-GCM (1350 bytes) seal operations in 1016106us (59049.0 ops/sec): 79.7 MB/s
Did 11000 AES-128-GCM (8192 bytes) seal operations in 1094184us (10053.2 ops/sec): 82.4 MB/s
Note the numbers above run with PMULL off, so the slow GHASH is
dampening the regression. If we test aes_nohw and vpaes paired with
PMULL on, the 20% perf hit becomes a 31% hit. The PMULL-less variant is
more likely to represent a real chip.
This is consistent with upstream's note in the comment, though it is
unclear if 20% is the right order of magnitude: "these results are worse
than scalar compiler-generated code, but it's constant-time and
therefore preferred".
[*] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100458_0301_00_en/lau1442495529696.html
Bug: 246
Change-Id: If1dc87f5131fce742052498295476fbae4628dbf
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35026
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
The 64-bit version can be fairly straightforwardly translated.
Ironically, this makes 32-bit x86 the first architecture to meet the
goal of constant-time AES-GCM given SIMD assembly. (Though x86_64 could
join by simply giving up on bsaes...)
Bug: 263
Change-Id: Icb2cec936457fac7132bbb5dbb094433bc14b86e
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35024
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
We currently require clmul instructions for constant-time GHASH
on x86_64. Otherwise, it falls back to a variable-time 4-bit table
implementation. However, a significant proportion of clients lack these
instructions.
Inspired by vpaes, we can use pshufb and a slightly different order of
incorporating the bits to make a constant-time GHASH. This requires
SSSE3, which is very common. Benchmarking old machines we had on hand,
it appears to be a no-op on Sandy Bridge and a small slowdown for
Penryn.
Sandy Bridge (Intel Pentium CPU 987 @ 1.50GHz):
(Note: these numbers are before 16-byte-aligning the table. That was an
improvement on Penryn, so it's possible Sandy Bridge is now better.)
Before:
Did 4244750 AES-128-GCM (16 bytes) seal operations in 4015000us (1057222.9 ops/sec): 16.9 MB/s
Did 442000 AES-128-GCM (1350 bytes) seal operations in 4016000us (110059.8 ops/sec): 148.6 MB/s
Did 84000 AES-128-GCM (8192 bytes) seal operations in 4015000us (20921.5 ops/sec): 171.4 MB/s
Did 3349250 AES-256-GCM (16 bytes) seal operations in 4016000us (833976.6 ops/sec): 13.3 MB/s
Did 343500 AES-256-GCM (1350 bytes) seal operations in 4016000us (85532.9 ops/sec): 115.5 MB/s
Did 65250 AES-256-GCM (8192 bytes) seal operations in 4015000us (16251.6 ops/sec): 133.1 MB/s
After:
Did 4229250 AES-128-GCM (16 bytes) seal operations in 4016000us (1053100.1 ops/sec): 16.8 MB/s [-0.4%]
Did 442250 AES-128-GCM (1350 bytes) seal operations in 4016000us (110122.0 ops/sec): 148.7 MB/s [+0.1%]
Did 83500 AES-128-GCM (8192 bytes) seal operations in 4015000us (20797.0 ops/sec): 170.4 MB/s [-0.6%]
Did 3286500 AES-256-GCM (16 bytes) seal operations in 4016000us (818351.6 ops/sec): 13.1 MB/s [-1.9%]
Did 342750 AES-256-GCM (1350 bytes) seal operations in 4015000us (85367.4 ops/sec): 115.2 MB/s [-0.2%]
Did 65250 AES-256-GCM (8192 bytes) seal operations in 4016000us (16247.5 ops/sec): 133.1 MB/s [-0.0%]
Penryn (Intel Core 2 Duo CPU P8600 @ 2.40GHz):
Before:
Did 1179000 AES-128-GCM (16 bytes) seal operations in 1000139us (1178836.1 ops/sec): 18.9 MB/s
Did 97000 AES-128-GCM (1350 bytes) seal operations in 1006347us (96388.2 ops/sec): 130.1 MB/s
Did 18000 AES-128-GCM (8192 bytes) seal operations in 1028943us (17493.7 ops/sec): 143.3 MB/s
Did 977000 AES-256-GCM (16 bytes) seal operations in 1000197us (976807.6 ops/sec): 15.6 MB/s
Did 82000 AES-256-GCM (1350 bytes) seal operations in 1012434us (80992.9 ops/sec): 109.3 MB/s
Did 15000 AES-256-GCM (8192 bytes) seal operations in 1006528us (14902.7 ops/sec): 122.1 MB/s
After:
Did 1306000 AES-128-GCM (16 bytes) seal operations in 1000153us (1305800.2 ops/sec): 20.9 MB/s [+10.8%]
Did 94000 AES-128-GCM (1350 bytes) seal operations in 1009852us (93082.9 ops/sec): 125.7 MB/s [-3.4%]
Did 17000 AES-128-GCM (8192 bytes) seal operations in 1012096us (16796.8 ops/sec): 137.6 MB/s [-4.0%]
Did 1070000 AES-256-GCM (16 bytes) seal operations in 1000929us (1069006.9 ops/sec): 17.1 MB/s [+9.4%]
Did 79000 AES-256-GCM (1350 bytes) seal operations in 1002209us (78825.9 ops/sec): 106.4 MB/s [-2.7%]
Did 15000 AES-256-GCM (8192 bytes) seal operations in 1061489us (14131.1 ops/sec): 115.8 MB/s [-5.2%]
Change-Id: I1c3760a77af7bee4aee3745d1c648d9e34594afb
Reviewed-on: https://boringssl-review.googlesource.com/c/34267
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
This reverts commit e907ed4c4b. CPUID
checks have been added so hopefully this time sticks.
Change-Id: I5e0e5b87427c1230132681f936b3c70bac8263b8
Reviewed-on: https://boringssl-review.googlesource.com/c/32924
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This reverts commit 3d450d2844. It fails
SDE, looks like a missing CPUID check before using vector instructions.
Change-Id: I6b7dd71d9e5b1f509d2e018bd8be38c973476b4e
Reviewed-on: https://boringssl-review.googlesource.com/c/32864
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
This commit improves the performance of ECDSA signature verification
(over NIST P-256 curve) for x86 platforms. The speedup is by a factor of 1.15x.
It does so by:
1) Leveraging the fact that the verification does not need
to run in constant time. To this end, we implemented:
a) the function ecp_nistz256_points_mul_public in a similar way to
the current ecp_nistz256_points_mul function by removing its constant
time features.
b) the Binary Extended Euclidean Algorithm (BEEU) in x86 assembly to
replace the current modular inverse function used for the inversion.
2) The last step in the ECDSA_verify function compares the (x) affine
coordinate with the signature (r) value. Converting x from the Jacobian's
representation to the affine coordinate requires to perform one inversions
(x_affine = x * z^(-2)). We save this inversion and speed up the computations
by instead bringing r to x (r_jacobian = r*z^2) which is faster.
The measured results are:
Before (on a Kaby Lake desktop with gcc-5):
Did 26000 ECDSA P-224 signing operations in 1002372us (25938.5 ops/sec)
Did 11000 ECDSA P-224 verify operations in 1043821us (10538.2 ops/sec)
Did 55000 ECDSA P-256 signing operations in 1017560us (54050.9 ops/sec)
Did 17000 ECDSA P-256 verify operations in 1051280us (16170.8 ops/sec)
After (on a Kaby Lake desktop with gcc-5):
Did 27000 ECDSA P-224 signing operations in 1011287us (26698.7 ops/sec)
Did 11640 ECDSA P-224 verify operations in 1076698us (10810.8 ops/sec)
Did 55000 ECDSA P-256 signing operations in 1016880us (54087.0 ops/sec)
Did 20000 ECDSA P-256 verify operations in 1038736us (19254.2 ops/sec)
Before (on a Skylake server platform with gcc-5):
Did 25000 ECDSA P-224 signing operations in 1021651us (24470.2 ops/sec)
Did 10373 ECDSA P-224 verify operations in 1046563us (9911.5 ops/sec)
Did 50000 ECDSA P-256 signing operations in 1002774us (49861.7 ops/sec)
Did 15000 ECDSA P-256 verify operations in 1006471us (14903.6 ops/sec)
After (on a Skylake server platform with gcc-5):
Did 25000 ECDSA P-224 signing operations in 1020958us (24486.8 ops/sec)
Did 10373 ECDSA P-224 verify operations in 1046359us (9913.4 ops/sec)
Did 50000 ECDSA P-256 signing operations in 1003996us (49801.0 ops/sec)
Did 18000 ECDSA P-256 verify operations in 1021604us (17619.4 ops/sec)
Developers and authors:
***************************************************************************
Nir Drucker (1,2), Shay Gueron (1,2)
(1) Amazon Web Services Inc.
(2) University of Haifa, Israel
***************************************************************************
Change-Id: Idd42a7bc40626bce974ea000b61fdb5bad33851c
Reviewed-on: https://boringssl-review.googlesource.com/c/31304
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
(Only in package names. Hyphens in file names are file.)
Change-Id: I80b705a780ffbad056abe7a7868d5682b30d2d44
Reviewed-on: https://boringssl-review.googlesource.com/32144
Commit-Queue: Matt Braithwaite <mab@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
This makes running go test, etc., in util/fipstools/delocate work! This
adds a go_executable command to CMake like:
go_executable(delocate boringssl.googlesource.com/boringssl/util/fipstools/delocate)
which internally gets dependencies and whatnot so it behaves like usual
Go.
Update-Note: delocate has been rearranged a bit.
Change-Id: I244a7317dd8d4f2ab77a0daa624ed3e0b385faef
Reviewed-on: https://boringssl-review.googlesource.com/31885
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
- In base.h, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols.h
- In all .S files, if BORINGSSL_PREFIX is defined, include
boringssl_prefix_symbols_asm.h
- In base.h, BSSL_NAMESPACE_BEGIN and BSSL_NAMESPACE_END are
defined with appropriate values depending on whether
BORINGSSL_PREFIX is defined; these macros are used in place
of 'namespace bssl {' and '}'
- Add util/make_prefix_headers.go, which takes a list of symbols
and auto-generates the header files mentioned above
- In CMakeLists.txt, if BORINGSSL_PREFIX and BORINGSSL_PREFIX_SYMBOLS
are defined, run util/make_prefix_headers.go to generate header
files
- In various CMakeLists.txt files, add "global_target" that all
targets depend on to give us a place to hook logic that must run
before all other targets (in particular, the header file generation
logic)
- Document this in BUILDING.md, including the fact that it is
the caller's responsibility to provide the symbol list and keep it
up to date
- Note that this scheme has not been tested on Windows, and likely
does not work on it; Windows support will need to be added in a
future commit
Change-Id: If66a7157f46b5b66230ef91e15826b910cf979a2
Reviewed-on: https://boringssl-review.googlesource.com/31364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
We currently write a mix of "if (FOO)" and "if(FOO)". While the former looks
more like a usual language, CMake believes everything, even "if" and "else", is
just a really really funny function call (a "command").
We should pick something for consistency. Upstream CMake writes "if(FOO)", so
go with that one.
Change-Id: I67e0eb650a52670110b417312a362c9f161c8721
Reviewed-on: https://boringssl-review.googlesource.com/30807
Reviewed-by: Adam Langley <agl@google.com>
Setting OPENSSL_NO_ASM skips enabling the “ASM” language in CMake.
However, the FIPS module fundamentally needs to build asm because
delocate works via textual assembly. Thus this combination is currently
broken with CMake.
This change ensures that support for building asm is enabled in CMake
for this combination.
Change-Id: I4516cf3a6f579ee7c72f04ac25d15785926cf125
Reviewed-on: https://boringssl-review.googlesource.com/29884
Reviewed-by: Adam Langley <agl@google.com>
This is the last of the non-GTest tests. We never did end up writing
example files or doc.go tooling for them. And probably examples should
be in C++ at this point.
Bug: 129
Change-Id: Icbc43c9639cfed7423df20df1cdcb8c35f23fc1a
Reviewed-on: https://boringssl-review.googlesource.com/17669
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
BUG=129
Change-Id: Ia8b0639489fea817be4bb24f0457629f0fd6a815
Reviewed-on: https://boringssl-review.googlesource.com/16947
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Most importantly, this version of delocate works for ppc64le. It should
also work for x86-64, but will need significant testing to make sure
that it covers all the cases that the previous delocate.go covered.
It's less stringtastic than the old code, however the parser isn't as
nice as I would have liked. I thought that the reason we put up with
AT&T syntax with Intel is so that assembly syntax could be somewhat
consistent across platforms. At least for ppc64le, that does not appear
to be the case.
Change-Id: Ic7e3c6acc3803d19f2c3ff5620c5e39703d74212
Reviewed-on: https://boringssl-review.googlesource.com/16464
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This introduces machinery to start embedding the test data files into
the crypto_test binary. Figuring out every CI's test data story is more
trouble than is worth it. The GTest FileTest runner is considerably
different from the old one:
- It returns void and expects failures to use the GTest EXPECT_* and
ASSERT_* macros, rather than ExpectBytesEqual. This is more monkey
work to convert, but ultimately less work to add new tests. I think
it's also valuable for our FileTest and normal test patterns to align
as much as possible. The line number is emitted via SCOPED_TRACE.
- I've intentionally omitted the Error attribute handling, since that
doesn't work very well with the new callback. This means evp_test.cc
will take a little more work to convert, but this is again to keep our
two test patterns aligned.
- The callback takes a std::function rather than a C-style void pointer.
This means we can go nuts with lambdas. It also places the path first
so clang-format doesn't go nuts.
BUG=129
Change-Id: I0d1920a342b00e64043e3ea05f5f5af57bfe77b3
Reviewed-on: https://boringssl-review.googlesource.com/16507
Reviewed-by: Adam Langley <agl@google.com>
This makes things a little easier for some of our tooling.
Change-Id: Ia7e73daf0a5150b106cf9b03b10cae194cb8fc5a
Reviewed-on: https://boringssl-review.googlesource.com/15104
Reviewed-by: Matt Braithwaite <mab@google.com>
Reviewed-by: Adam Langley <agl@google.com>
This is required by FIPS testing.
Change-Id: Ia399a0bf3d03182499c0565278a3713cebe771e3
Reviewed-on: https://boringssl-review.googlesource.com/16044
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The names in the P-224 code collided with the P-256 code and thus many
of the functions and constants in the P-224 code have been prefixed.
Change-Id: I6bcd304640c539d0483d129d5eaf1702894929a8
Reviewed-on: https://boringssl-review.googlesource.com/15847
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Not requiring the list of assembly sources to be comma-separated is
helpful to environments where the list would more naturally be
treated as a list.
Change-Id: I43b18cdbeed1dc7ad217ff61557ac55860f40733
Reviewed-on: https://boringssl-review.googlesource.com/15585
Reviewed-by: Matt Braithwaite <mab@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
CMake loves making archives, but that's not universal.
Change-Id: I5356b4701982748a46817e0094ad838605dcada6
Reviewed-on: https://boringssl-review.googlesource.com/15144
Reviewed-by: Adam Langley <agl@google.com>
Support for platforms that we don't support FIPS on doesn't need to be
in the module. Also, functions for dealing with whether fork-unsafe
buffering is enabled are left out because they aren't implementing any
cryptography and they use global r/w state, making their inclusion
painful.
Change-Id: I71a0123db6f5449e9dfc7ec7dea0944428e661aa
Reviewed-on: https://boringssl-review.googlesource.com/15084
Reviewed-by: Adam Langley <agl@google.com>
The changes to delocate.go are needed because modes/ does things like
return the address of a module function. Both of these need to be
changed from referencing the GOT to using local symbols.
Rather than testing whether |ghash| is |gcm_ghash_avx|, we can just keep
that information in a flag.
The test for |aesni_ctr32_encrypt_blocks| is more problematic, but I
believe that it's superfluous and can be dropped: if you passed in a
stream function that was semantically different from
|aesni_ctr32_encrypt_blocks| you would already have a bug because
|CRYPTO_gcm128_[en|de]crypt_ctr32| will handle a block at the end
themselves, and assume a big-endian, 32-bit counter anyway.
Change-Id: I68a84ebdab6c6006e11e9467e3362d7585461385
Reviewed-on: https://boringssl-review.googlesource.com/15064
Reviewed-by: Adam Langley <agl@google.com>
It's not obvious how to make ASAN happy with the integrity test but this
will let us test FIPS-only code with ASAN at least.
Change-Id: Iac983787e04cb86a158e4416c410d9b2d1e5e03f
Reviewed-on: https://boringssl-review.googlesource.com/14965
Reviewed-by: Adam Langley <agl@google.com>
Previously, inject-hash would run the FIPS module in order to trigger a
failure and then extract the calculated hash value from the output. This
makes cross-compiling difficult because the build process needs to run a
binary for the target platform.
This change drops this step. Instead, inject-hash.go parses the object
file itself and calculates the hash without needing to run the module.
Change-Id: I2593daa03094b0a17b498c2e8be6915370669596
Reviewed-on: https://boringssl-review.googlesource.com/14964
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This restores the original version of delocate.go, with the subsequent
bugfixes patched in. With this, the FIPS module builds with GCC and
Clang, with and without optimizations. I did patch over a variant of the
macro though, since it was otherwise really wordy.
Playing games with sections was a little overly clever and relied on the
compiler not performing a number of optimizations. Clang blew threw all
of those assumptions.
Change-Id: Ib4da468a5925998457994f9e392cf0c04573fe91
Reviewed-on: https://boringssl-review.googlesource.com/14805
Reviewed-by: Adam Langley <agl@google.com>