Update-Note: Some RSA_FLAG_* constants are gone. Code search says they
were unused, but they can be easily restored if this breaks anything.
Change-Id: I47f642af5af9f8d80972ca8da0a0c2bd271c20eb
Reviewed-on: https://boringssl-review.googlesource.com/24244
Reviewed-by: Adam Langley <agl@google.com>
Otherwise it leaves something on the error queue and confuses
SSL_get_error, should the handshake state machine fail immediately
afterwards because of a BIO-level error.
Change-Id: I2c7b5e31368b9c5b2efa324166f52972430d6074
Reviewed-on: https://boringssl-review.googlesource.com/24247
Reviewed-by: Steven Valdez <svaldez@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Upgrade-Note: SSL_CTX_set_tls13_variant(tls13_experiment) on the server
should switch to SSL_CTX_set_tls13_variant(tls13_experiment2).
(Configuring any TLS 1.3 variants on the server enables all variants,
so this is a no-op. We're just retiring some old experiments.)
Change-Id: I60f0ca3f96ff84bdf59e1a282a46e51d99047462
Reviewed-on: https://boringssl-review.googlesource.com/23784
Commit-Queue: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
The first step of RSA with the CRT optimization is to reduce our input
modulo p and q. We can do this in constant-time[*] with Montgomery
reduction. When p and q are the same size, Montgomery reduction's bounds
hold. We need two rounds of it because the first round gives us an
unwanted R^-1.
This does not appear to have a measurable impact on performance. Also
add a long TODO describing how to make the rest of the function
constant-time[*] which hopefully we'll get to later. RSA blinding should
protect us from it all, but make this constant-time anyway.
Since this and the follow-up work will special-case weird keys, add a
test that we don't break those unintentionally. (Though I am not above
breaking them intentionally someday...)
Thanks to Andres Erbsen for discussions on how to do this bit properly.
[*] Ignoring the pervasive bn_correct_top problem for the moment.
Change-Id: Ide099a9db8249cb6549be99c5f8791a39692ea81
Reviewed-on: https://boringssl-review.googlesource.com/24204
Reviewed-by: Adam Langley <agl@google.com>
QUIC will need to derive keys at this point. This also smooths over a
part of the server 0-RTT abstraction. Like with False Start, the SSL
object is largely in a functional state at this point.
Bug: 221
Change-Id: I4207d8cb1273a1156e728a7bff3943cc2c69e288
Reviewed-on: https://boringssl-review.googlesource.com/24224
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Originally, the only OpenSSL API to stringify errors was:
char *ERR_error_string(unsigned long e, char *buf);
This API leaves callers a choice to either be thread unsafe (buf = NULL)
or pass in a buffer with unknown size. Indeed the original
implementation was just a bunch of unchecked sprintfs with, in the buf =
NULL case, a static 256-byte buffer.
388f2f56f2/crypto/err/err.c (L374)
Then ERR_error_string was documented that the buffer must be size 120.
Nowhere in the code was 120 significant. I expect OpenSSL just made up a
number.
388f2f56f2
Then upstream added the ERR_error_string_n API. Although the
documentation stated 120 bytes, the internal buffer was 256, so the code
actually translates ERR_error_string to ERR_error_string_n(e, buf, 256),
not ERR_error_string_n(e, buf, 120)!
e5c84d5152
So the documentation was wrong all this time! OpenSSL 1.1.0 corrected
the documentation to 256, but, alas, a lot of code used the
documentation and sized the buffer at 120. We should fix all
ERR_error_string callers to ERR_error_string_n but, in the meantime,
using 120 is probably less effort.
Note this also affects ERR_print_errors_cb right now. We don't have
function codes, so 120 bytes leaves 60 bytes for the reason code. Our
longest one, TLS_PEER_DID_NOT_RESPOND_WITH_CERTIFICATE_LIST is 46 bytes,
so it's a little tight, but, if needed, we can recover 20-ish bytes by
shrinking the library names. We can also always make ERR_print_errors_cb
use a larger buffer.
Change-Id: I472a1a802f2e6281cc7515d2a452208d6bac1200
Reviewed-on: https://boringssl-review.googlesource.com/24184
Reviewed-by: Adam Langley <agl@google.com>
ARMv8 kindly deprecated most of its IT instructions in Thumb mode.
These files are taken from upstream and are used on both ARMv7 and ARMv8
processors. Accordingly, silence the warnings by marking the file as
targetting ARMv7. In other files, they were accidentally silenced anyway
by way of the existing .arch lines.
This can be reproduced by building with the new NDK and passing
-DCMAKE_ASM_FLAGS=-march=armv8-a. Some of our downstream code ends up
passing that to the assembly.
Note this change does not attempt to arrange for ARMv8-A/T32 to get
code which honors the constraints. It only silences the warnings and
continues to give it the same ARMv7-A/Thumb-2 code that backwards
compatibility dictates it continue to run.
Bug: chromium:575886, b/63131949
Change-Id: I24ce0b695942eaac799347922b243353b43ad7df
Reviewed-on: https://boringssl-review.googlesource.com/24166
Reviewed-by: Adam Langley <agl@google.com>
The one in the NDK works just fine. In particular, this means one can
pass -DCMAKE_ASM_FLAGS="-march=armv8-a" and test the ARMv8 assembler
warnings.
Additionally, make the workaround put the flags in the other order, so
-march is user-overridable.
Change-Id: I278ddd17ab688f83ee01f2aca4ff32307f5b0a2d
Reviewed-on: https://boringssl-review.googlesource.com/24164
Reviewed-by: Adam Langley <agl@google.com>
The third-party toolchain file doesn't actually work with newer NDKs,
and the one shipped with the NDK has fewer bugs.
Change-Id: I59e1db393f0d66b186fb71590fab14db7faa0756
Reviewed-on: https://boringssl-review.googlesource.com/24165
Reviewed-by: Adam Langley <agl@google.com>
This makes it difficult to build against the NDK's toolchain file. The
problem is __clang__ just means Clang is the frontend and implies
nothing about which assembler. When using as, it is fine. When using
clang-as on Linux, one needs a clang-as from this year.
The only places where we case about clang's integrated assembler are iOS
(where perlasm strips out .arch anyway) and build environments like
Chromium which have a regularly-updated clang. Thus we can remove this
now.
Bug: 39
Update-Note: Holler if this breaks the build. If it doesn't break the
build, you can probably remove any BORINGSSL_CLANG_SUPPORTS_DOT_ARCH
or explicit -march armv8-a+crypto lines in your BoringSSL build.
Change-Id: I21ce54b14c659830520c2f1d51c7bd13e0980c68
Reviewed-on: https://boringssl-review.googlesource.com/24124
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
CMake screwed up. See
f969f1a9ce.
It looks like CMake 3.10.1 is in the process of being released. While we
wait for them to put together that build, I'll just revert this real
quick. It's nice to keep them all at the same version, but we really
just needed a new one for Android.
Change-Id: I01b5a54b65df2194d7b84c825dfdcf0fb87fd06b
Reviewed-on: https://boringssl-review.googlesource.com/24144
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The NDK toolchain file requires 3.6.0 or later. We were still using
3.5.0.
Change-Id: I216d33bed4187c7e62a2672eb4f92ce815b60b1c
Reviewed-on: https://boringssl-review.googlesource.com/24104
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
third_party/fiat/p256.c is weird. We need to switch everything to
sources.cmake.
Change-Id: I52e56e87a1ac5534b88a372ad68a1052fb019b67
Reviewed-on: https://boringssl-review.googlesource.com/24084
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It actually works fine. I just forgot one of the typedefs last time.
This gives a roughly 2x improvement on P-256 in clang-cl +
OPENSSL_SMALL, the configuration used by Chrome.
Before:
Did 1302 ECDH P-256 operations in 1015000us (1282.8 ops/sec)
Did 4250 ECDSA P-256 signing operations in 1047000us (4059.2 ops/sec)
Did 1750 ECDSA P-256 verify operations in 1094000us (1599.6 ops/sec)
After:
Did 3250 ECDH P-256 operations in 1078000us (3014.8 ops/sec)
Did 8250 ECDSA P-256 signing operations in 1016000us (8120.1 ops/sec)
Did 3250 ECDSA P-256 verify operations in 1063000us (3057.4 ops/sec)
(These were taken on a VM, so the measurements are extremely noisy, but
this sort of improvement is visible regardless.)
Alas, we do need a little extra bit of fiddling because division does
not work (crbug.com/787617).
Bug: chromium:787617
Update-Note: This removes the MSan uint128_t workaround which does not
appear to be necessary anymore.
Change-Id: I8361314608521e5bdaf0e7eeae7a02c33f55c69f
Reviewed-on: https://boringssl-review.googlesource.com/23984
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: Ic79f189c0bb2abf5d87f59ee410cafb4fb116ab8
Reviewed-on: https://boringssl-review.googlesource.com/24004
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
The fiat-crypto-generated code uses the Montgomery form implementation
strategy, for both 32-bit and 64-bit code.
64-bit throughput seems slower, but the difference is smaller than noise between repetitions (-2%?)
32-bit throughput has decreased significantly for ECDH (-40%). I am
attributing this to the change from varibale-time scalar multiplication
to constant-time scalar multiplication. Due to the same bottleneck,
ECDSA verification still uses the old code (otherwise there would have
been a 60% throughput decrease). On the other hand, ECDSA signing
throughput has increased slightly (+10%), perhaps due to the use of a
precomputed table of multiples of the base point.
64-bit benchmarks (Google Cloud Haswell):
with this change:
Did 9126 ECDH P-256 operations in 1009572us (9039.5 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039832us (22119.0 ops/sec)
Did 8820 ECDSA P-256 verify operations in 1024242us (8611.2 ops/sec)
master (40e8c921ca):
Did 9340 ECDH P-256 operations in 1017975us (9175.1 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039820us (22119.2 ops/sec)
Did 8688 ECDSA P-256 verify operations in 1021108us (8508.4 ops/sec)
benchmarks on ARMv7 (LG Nexus 4):
with this change:
Did 150 ECDH P-256 operations in 1029726us (145.7 ops/sec)
Did 506 ECDSA P-256 signing operations in 1065192us (475.0 ops/sec)
Did 363 ECDSA P-256 verify operations in 1033298us (351.3 ops/sec)
master (2fce1beda0):
Did 245 ECDH P-256 operations in 1017518us (240.8 ops/sec)
Did 473 ECDSA P-256 signing operations in 1086281us (435.4 ops/sec)
Did 360 ECDSA P-256 verify operations in 1003846us (358.6 ops/sec)
64-bit tables converted as follows:
import re, sys, math
p = 2**256 - 2**224 + 2**192 + 2**96 - 1
R = 2**256
def convert(t):
x0, s1, x1, s2, x2, s3, x3 = t.groups()
v = int(x0, 0) + 2**64 * (int(x1, 0) + 2**64*(int(x2,0) + 2**64*(int(x3, 0)) ))
w = v*R%p
y0 = hex(w%(2**64))
y1 = hex((w>>64)%(2**64))
y2 = hex((w>>(2*64))%(2**64))
y3 = hex((w>>(3*64))%(2**64))
ww = int(y0, 0) + 2**64 * (int(y1, 0) + 2**64*(int(y2,0) + 2**64*(int(y3, 0)) ))
if ww != v*R%p:
print(x0,x1,x2,x3)
print(hex(v))
print(y0,y1,y2,y3)
print(hex(w))
print(hex(ww))
assert 0
return '{'+y0+s1+y1+s2+y2+s3+y3+'}'
fe_re = re.compile('{'+r'(\s*,\s*)'.join(r'(\d+|0x[abcdefABCDEF0123456789]+)' for i in range(4)) + '}')
print (re.sub(fe_re, convert, sys.stdin.read()).rstrip('\n'))
32-bit tables converted from 64-bit tables
Change-Id: I52d6e5504fcb6ca2e8b0ee13727f4500c80c1799
Reviewed-on: https://boringssl-review.googlesource.com/23244
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It's misnamed but, more importantly, doesn't do anything because the
test client isn't sending early data to begin with. We really need to
make these tests less error-prone to write. With this fix, the test
actually notices if we remove the server-side 0-RTT check.
Also remove MaxEarlyDataSize from the other server tests which
erroneously set it. Any test with sets that was likely copy-and-pasted
incorrectly.
Change-Id: Idc24bc1590e0316946022341185285418ab8c77b
Reviewed-on: https://boringssl-review.googlesource.com/23944
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Along the way, this allows us to tidy up the invariants associated with
EC_SCALAR. They were fuzzy around ec_point_mul_scalar and some
computations starting from the digest in ECDSA. The latter I've put into
the type system with EC_LOOSE_SCALAR.
As for the former, Andres points out that particular EC implementations
are only good for scalars within a certain range, otherwise you may need
extra work to avoid the doubling case. To simplify curve
implementations, we reduce them fully rather than do the looser bit size
check, so they can have the stronger precondition to work with.
Change-Id: Iff9a0404f89adf8f7f914f8e8246c9f3136453f1
Reviewed-on: https://boringssl-review.googlesource.com/23664
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The newer clang-cl is unhappy about the tautological comparison on
Windows, but the comparison itself is unnecessary anyway, since the
values will never exceed uint32_t.
I think the reason it's not firing elsewhere is because on other 64-bit
platforms, it is not tautological because long is 64-bit. On other
32-bit platforms, I'm not sure we actually have a standalone trunk clang
builder right now.
Update-Note: UTF8_getc and UTF8_putc were unexported. No one appears to
be calling them. (We're a crypto library, not a Unicode library.)
Change-Id: I0949ddea3131dca5f55d04e672c3ccf2915c41ab
Reviewed-on: https://boringssl-review.googlesource.com/23844
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Credit to OSS-Fuzz for finding this.
CVE-2017-3738
(Imported from upstream's 5630661aecbea5fe3c4740f5fea744a1f07a6253 and
77d75993651b63e872244a3256e37967bb3c3e9e.)
Confirmed with Intel SDE that the fix makes the test vector pass and
that, without the fix, the test vector does not. (Well, we knew the
latter already, since it was our test vector.)
Change-Id: I167aa3407ddab3b434bacbd18e099c55aa40ac4c
Reviewed-on: https://boringssl-review.googlesource.com/23884
Reviewed-by: Adam Langley <agl@google.com>
We check that the private key is less than the order, but we forgot the
other end.
Update-Note: It's possible some caller was relying on this, but since
that function already checked the other half of the range, I'm
expecting this to be a no-op change.
Change-Id: I4a53357d7737735b3cfbe97d379c8ca4eca5d5ac
Reviewed-on: https://boringssl-review.googlesource.com/23665
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
This is a recent Clang warning, but it's far too aggressive. The earlier
unsigned long silliness was worth fixing, but it otherwise complains on
32-bit platforms with:
if (some_size_t > 0xffffffff) {
...
}
which is unreasonable as, on 64-bit platforms, this check is meaningful
and requiring the programmer add ifdefs is error-prone. This matches
Chromium in https://crbug.com/767059.
Bug: chromium:767059
Change-Id: I0bb0f3a4b60f222e9d1b3c569471fbcf5518caed
Reviewed-on: https://boringssl-review.googlesource.com/23845
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
The newer clang should hopefully fix the new linux_clang_cfi bot.
Note the VS2017 revision actually went backwards due to
db45606398
Change-Id: Icaca7a57596f063ccca490917d4b78813f2e9537
Reviewed-on: https://boringssl-review.googlesource.com/23824
Reviewed-by: Adam Langley <agl@google.com>
We can probably do this globally at this point since the cipher
requirements are much more restrict than they were in the beginning.
(Firefox, in particular, has done so far a while.) For now add a flag
since some consumer wanted this.
I'll see about connecting it to a Chrome field trial after our breakage
budget is no longer reserved for TLS 1.3.
Change-Id: Ib61dd5aae2dfd48b56e79873a7f3061a7631a5f8
Reviewed-on: https://boringssl-review.googlesource.com/23725
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This fixes compilation on aarch64 and other architectures for Android.
Change-Id: I0b09ab06858c92d07e2376e244a4626a6af5037b
Reviewed-on: https://boringssl-review.googlesource.com/23764
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: Id8b69bb6103dd938f4c6d0d2ec24f3d50ba5513c
Update-Note: fixes b/70034392
Reviewed-on: https://boringssl-review.googlesource.com/23744
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: I87edf7e1fee07da4bc93cc7ab524b79991a4206e
Reviewed-on: https://boringssl-review.googlesource.com/23724
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Rejecting values where we'd previous called BN_nnmod may have been
overly ambitious. In the long run, all the supported ECC APIs (ECDSA*,
ECDH_compute_key, and probably some additional new ECDH API) will be
using the EC_SCALAR version anyway, so this doesn't really matter.
Change-Id: I79cd4015f2d6daf213e4413caa2a497608976f93
Reviewed-on: https://boringssl-review.googlesource.com/23584
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This reverts commit 66801feb17. This
turned out to break a lot more than expected. Hopefully we can reland it
soon, but we need to fix up some consumers first.
Note due to work that went in later, this is not a trivial revert and
should be re-reviewed.
Change-Id: I6474b67cce9a8aa03f722f37ad45914b76466bea
Reviewed-on: https://boringssl-review.googlesource.com/23644
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
We need it in both directions. Also I missed that in OBJ_obj2txt we
allowed uint64_t components, but in my new OBJ_txt2obj we only allowed
uint32_t. For consistency, upgrade that to uint64_t.
Bug: chromium:706445
Change-Id: I38cfeea8ff64b9acf7998e552727c6c3b2cc600f
Reviewed-on: https://boringssl-review.googlesource.com/23544
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: Ic99a949258e62cad168c2c39507ca63100a8ffe5
Reviewed-on: https://boringssl-review.googlesource.com/23264
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This is not a speedy operation, so the fuzzers need a bit of help to
avoid timeouts.
Bug: chromium:786049
Change-Id: Ib56281b63eb6c895057f21254f0cc7c5c2d85ee4
Reviewed-on: https://boringssl-review.googlesource.com/23484
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This throws me off every time.
Change-Id: I19848927fe821f7656dea0343361d70dae4007c9
Reviewed-on: https://boringssl-review.googlesource.com/23445
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
OBJ_txt2obj is currently implemented using BIGNUMs which is absurd. It
also depends on the giant OID table, which is undesirable. Write a new
one and expose the low-level function so Chromium can use it without the
OID table.
Bug: chromium:706445
Change-Id: I61ff750a914194f8776cb8d81ba5d3eb5eaa3c3d
Reviewed-on: https://boringssl-review.googlesource.com/23364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Steven Valdez <svaldez@google.com>
Change-Id: I60dc085fa02c152adb12a505b453fe8f84670d8b
Reviewed-on: https://boringssl-review.googlesource.com/23464
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This avoids taking quadratic time to pretty-print certificates with
excessively large integer fields. Very large integers aren't any more
readable in decimal than hexadecimal anyway, and the i2s_* functions
will parse either form.
Found by libFuzzer.
Change-Id: Id586cd1b0eef8936d38ff50433ae7c819f0054f3
Reviewed-on: https://boringssl-review.googlesource.com/23424
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
DECLARE_STACK_OF adds a trailing ; so we don't need a second one added
here.
Compiling a project using boringssl which uses -Werror,-Wextra-semi I
get errors:
```
third_party/boringssl/include/openssl/stack.h:374:1: error: extra ';' outside of a function [-Werror,-Wextra-semi]
DEFINE_STACK_OF(void)
^
third_party/boringssl/include/openssl/stack.h:355:3: note: expanded from macro 'DEFINE_STACK_OF'
BORINGSSL_DEFINE_STACK_OF_IMPL(type, type *, const type *) \
^
third_party/boringssl/include/openssl/stack.h:248:25: note: expanded from macro 'BORINGSSL_DEFINE_STACK_OF_IMPL'
DECLARE_STACK_OF(name); \
^
third_party/boringssl/include/openssl/stack.h:375:1: error: extra ';' outside of a function [-Werror,-Wextra-semi]
DEFINE_SPECIAL_STACK_OF(OPENSSL_STRING)
^
third_party/boringssl/include/openssl/stack.h:369:3: note: expanded from macro 'DEFINE_SPECIAL_STACK_OF'
BORINGSSL_DEFINE_STACK_OF_IMPL(type, type, const type)
^
third_party/boringssl/include/openssl/stack.h:248:25: note: expanded from macro 'BORINGSSL_DEFINE_STACK_OF_IMPL'
DECLARE_STACK_OF(name); \
^
2 errors generated.
```
Change-Id: Icc39e2341eb76544be72d2d7d0bd29e2f1ed0bf9
Reviewed-on: https://boringssl-review.googlesource.com/23404
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>