Commit Graph

9 Commits

Author SHA1 Message Date
David Benjamin
70fe610556 Implement ABI testing for aarch64.
This caught a bug in bn_mul_mont. Tested manually on iOS and Android.

Change-Id: I1819fcd9ad34dbe3ba92bba952507d86dd12185a
Reviewed-on: https://boringssl-review.googlesource.com/c/34805
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-02-05 21:44:04 +00:00
David Benjamin
0a87c4982c Implement ABI testing for ARM.
Update-Note: There's some chance this'll break iOS since I was unable to
test it there. The iPad I have to test on is too new to run 32-bit code
at all.

Change-Id: I6593f91b67a5e8a82828237d3b69ed948b07922d
Reviewed-on: https://boringssl-review.googlesource.com/c/34725
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-02-05 21:01:44 +00:00
David Benjamin
28f035f48b Implement unwind testing for Windows.
Unfortunately, due to most OpenSSL assembly using custom exception
handlers to unwind, most of our assembly doesn't work with
non-destructive unwind. For now, CHECK_ABI behaves like
CHECK_ABI_NO_UNWIND on Windows, and CHECK_ABI_SEH will test unwinding on
both platforms.

The tests do, however, work with the unwind-code-based assembly we
recently added, as well as the clmul-based GHASH which is also
code-based. Remove the ad-hoc SEH tests which intentionally hit memory
access exceptions, now that we can test unwind directly.

Now that we can test it, the next step is to implement SEH directives in
perlasm so writing these unwind codes is less of a chore.

Bug: 259
Change-Id: I23a57a22c5dc9fa4513f575f18192335779678a5
Reviewed-on: https://boringssl-review.googlesource.com/c/34784
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-02-05 19:22:15 +00:00
David Benjamin
23e1a1f2d3 Test and fix an ABI issue with small parameters.
Calling conventions must specify how to handle arguments smaller than a
machine word. Should the caller pad them up to a machine word size with
predictable values (zero/sign-extended), or should the callee tolerate
an arbitrary bit pattern?

Annoyingly, I found no text in either SysV or Win64 ABI documentation
describing any of this and resorted to experiment. The short answer is
that callees must tolerate an arbitrary bit pattern on x86_64, which
means we must test this. See the comment in abi_test::internal::ToWord
for the long answer.

CHECK_ABI now, if the type of the parameter is smaller than
crypto_word_t, fills the remaining bytes with 0xaa. This is so the
number is out of bounds for code expecting either zero or sign
extension. (Not that crypto assembly has any business seeing negative
numbers.)

Doing so reveals a bug in ecp_nistz256_ord_sqr_mont. The rep parameter
is typed int, but the code expected uint64_t. In practice, the compiler
will always compile this correctly because:

- On both Win64 and SysV, rep is a register parameter.

- The rep parameter is always a constant, so the compiler has no reason
  to leave garbage in the upper half.

However, I was indeed able to get a bug out of GCC via:

  uint64_t foo = (1ull << 63) | 2;  // Some global the compiler can't
                                    // prove constant.
  ecp_nistz256_ord_sqr_mont(res, a, foo >> 1);

Were ecp_nistz256_ord_sqr_mont a true int-taking function, this would
act like ecp_nistz256_ord_sqr_mont(res, a, 1). Instead, it hung. Fix
this by having it take a full-width word.

This mess has several consequences:

- ABI testing now ideally needs a functional testing component to fully cover
  this case. A bad input might merely produce the wrong answer. Still,
  this is fairly effective as it will cause most code to either segfault
  or loop forever. (Not the enc parameter to AES however...)

- We cannot freely change the type of assembly function prototypes. If the
  prototype says int or unsigned, it must be ignoring the upper half and
  thus "fixing" it to size_t cannot have handled the full range. (Unless
  it was simply wrong of the parameter is already bounded.) If the
  prototype says size_t, switching to int or unsigned will hit this type
  of bug. The former is a safer failure mode though.

- The simplest path out of this mess: new assembly code should *only*
  ever take word-sized parameters. This is not a tall order as the bad
  parameters are usually ints that should have been size_t.

Calling conventions are hard.

Change-Id: If8254aff8953844679fbce4bd3e345e5e2fa5213
Reviewed-on: https://boringssl-review.googlesource.com/c/34627
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-01-28 21:09:40 +00:00
David Benjamin
e569c7e25d Add ABI testing for 32-bit x86.
This is much less interesting (stack-based parameters, Windows and SysV
match, no SEH concerns as far as I can tell) than x86_64, but it was
easy to do and I'm more familiar with x86 than ARM, so it made a better
second architecture to make sure all the architecture ifdefs worked out.

Also fix a bug in the x86_64 direction flag code. It was shifting in the
wrong direction, making give 0 or 1<<20 rather than 0 or 1.

(Happily, x86_64 appears to be unique in having vastly different calling
conventions between OSs. x86 is the same between SysV and Windows, and
ARM had the good sense to specify a (mostly) common set of rules.)

Since a lot of the assembly functions use the same names and the tests
were written generically, merely dropping in a trampoline and
CallerState implementation gives us a bunch of ABI tests for free.

Change-Id: I15408c18d43e88cfa1c5c0634a8b268a150ed961
Reviewed-on: https://boringssl-review.googlesource.com/c/34624
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
2019-01-28 20:40:06 +00:00
David Benjamin
e592d595c4 Add direction flag checking to CHECK_ABI.
Linux and Windows ABIs both require that the direction flag be cleared
on function exit, so that functions can rely on it being cleared on
entry. (Some OpenSSL assembly preserves it, which is stronger, but we
only require what is specified by the ABI so CHECK_ABI works with C
compiler output.)

Change-Id: I1a320aed4371176b4b44fe672f1a90167b84160f
Reviewed-on: https://boringssl-review.googlesource.com/c/34187
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-01-09 03:22:15 +00:00
David Benjamin
17d553d299 Add a CFI tester to CHECK_ABI.
This uses the x86 trap flag and libunwind to test CFI works at each
instruction. For now, it just uses the system one out of pkg-config and
disables unwind tests if unavailable. We'll probably want to stick a
copy into //third_party and perhaps try the LLVM one later.

This tester caught two bugs in P-256 CFI annotations already:
I47b5f9798b3bcee1748e537b21c173d312a14b42 and
I9f576d868850312d6c14d1386f8fbfa85021b347

An earlier design used PTRACE_SINGLESTEP with libunwind's remote
unwinding features. ptrace is a mess around stop signals (see group-stop
discussion in ptrace(2)) and this is 10x faster, so I went with it. The
question of which is more future-proof is complex:

- There are two libunwinds with the same API,
  https://www.nongnu.org/libunwind/ and LLVM's. This currently uses the
  system nongnu.org for convenience. In future, LLVM's should be easier
  to bundle (less complex build) and appears to even support Windows,
  but I haven't tested this.  Moreover, setting the trap flag keeps the
  test single-process, which is less complex on Windows. That suggests
  the trap flag design and switching to LLVM later. However...

- Not all architectures have a trap flag settable by userspace. As far
  as I can tell, ARMv8's PSTATE.SS can only be set from the kernel. If
  we stick with nongnu.org libunwind, we can use PTRACE_SINGLESTEP and
  remote unwinding. Or we implement it for LLVM. Another thought is for
  the ptracer to bounce SIGTRAP back into the process, to share the
  local unwinding code.

- ARMv7 has no trap flag at all and PTRACE_SINGLESTEP fails. Debuggers
  single-step by injecting breakpoints instead. However, ARMv8's trap
  flag seems to work in both AArch32 and AArch64 modes, so we may be
  able to condition it on a 64-bit kernel.

Sadly, neither strategy works with Intel SDE. Adding flags to cpucap
vectors as we do with ARM would help, but it would not emulate CPUs
newer than the host CPU. For now, I've just had SDE tests disable these.

Annoyingly, CMake does not allow object libraries to have dependencies,
so make test_support a proper static library. Rename the target to
test_support_lib to avoid
https://gitlab.kitware.com/cmake/cmake/issues/17785

Update-Note: This adds a new optional test dependency, but it's disabled
by default (define BORINGSSL_HAVE_LIBUNWIND), so consumers do not need
to do anything. We'll probably want to adjust this in the future.

Bug: 181
Change-Id: I817263d7907aff0904a9cee83f8b26747262cc0c
Reviewed-on: https://boringssl-review.googlesource.com/c/33966
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-01-03 22:01:55 +00:00
David Benjamin
f77c8a38be Be less clever with CHECK_ABI.
Unwind testing will make CHECK_ABI much slower. The original
ptrace-based design is some 10,000x slower. I've found an alternate
design that's a mere 1,000x slower, but this probably warrants being
more straightforward. It also removes the weirdness where NDEBUG
controlled which tests were run.

While it does mean we need to write some extra tests for p256-x86_64.pl,
we otherwise do not directly unit test our assembly anyway. Usually we
test the public crypto APIs themselves. So, for most files, this isn't
actually extra work.

Bug: 181
Change-Id: I7cbb7f930c2ea6ae32a201da503dcd36844704f0
Reviewed-on: https://boringssl-review.googlesource.com/c/33965
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-01-03 21:02:24 +00:00
David Benjamin
54efa1afc0 Add an ABI testing framework.
Dear reader, I must apologize in advance. This CL contains the following:

- A new 256-line perlasm file with non-trivial perl bits and a dual-ABI
  variadic function caller.

- C preprocessor gymnastics, with variadic macros and fun facts about
  __VA_ARGS__'s behavior on empty argument lists.

- C++ template gymnastics, including variadic arguments, template
  specialization, std::enable_if, and machinery to control template argument
  deduction.

Enjoy.

This tests that our assembly functions correctly honor platform ABI
conventions. Right now this only tests callee-saved registers, but it should be
extendable to SEH/CFI unwind testing with single-step debugging APIs.
Register-checking does not involve anything funny and should be compatible with
SDE. (The future unwind testing is unlikely to be compatible.)

This CL adds support for x86_64 SysV and Win64 ABIs. ARM, AArch64, and x86 can
be added in the future. The testing is injected in two places. First, all the
assembly tests in p256-x86_64-test.cc are now instrumented. This is the
intended workflow and should capture all registers.

However, we currently do not unit-test our assembly much directly. We should do
that as follow-up work[0] but, in the meantime, I've also wrapped all of the GTest
main function in an ABI test. This is imperfect as ABI failures may be masked
by other stack frames, but it costs nothing[1] and is pretty reliable at
catching Win64 xmm register failures.

[0] An alternate strategy would be, in debug builds, unconditionally instrument
every assembly call in libcrypto. But the CHECK_ABI macro would be difficult to
replicate in pure C, and unwind testing may be too invasive for this. Still,
something to consider when we C++ libcrypto.

[1] When single-stepped unwind testing exists, it won't cost nothing. The
gtest_main.cc call will turn unwind testing off.

Change-Id: I6643b26445891fd46abfacac52bc024024c8d7f6
Reviewed-on: https://boringssl-review.googlesource.com/c/33764
Reviewed-by: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <alangley@gmail.com>
Commit-Queue: David Benjamin <davidben@google.com>
2018-12-21 16:09:32 +00:00