RSA_METHOD_FLAG_NO_CHECK is the same as our RSA_FLAG_OPAQUE. cURL uses
this to determine if it should call SSL_CTX_check_private_key.
Change-Id: Ie2953632346a31de346a4452f4eaad8435cf76e8
Reviewed-on: https://boringssl-review.googlesource.com/24245
Reviewed-by: Adam Langley <agl@google.com>
Update-Note: Some RSA_FLAG_* constants are gone. Code search says they
were unused, but they can be easily restored if this breaks anything.
Change-Id: I47f642af5af9f8d80972ca8da0a0c2bd271c20eb
Reviewed-on: https://boringssl-review.googlesource.com/24244
Reviewed-by: Adam Langley <agl@google.com>
The first step of RSA with the CRT optimization is to reduce our input
modulo p and q. We can do this in constant-time[*] with Montgomery
reduction. When p and q are the same size, Montgomery reduction's bounds
hold. We need two rounds of it because the first round gives us an
unwanted R^-1.
This does not appear to have a measurable impact on performance. Also
add a long TODO describing how to make the rest of the function
constant-time[*] which hopefully we'll get to later. RSA blinding should
protect us from it all, but make this constant-time anyway.
Since this and the follow-up work will special-case weird keys, add a
test that we don't break those unintentionally. (Though I am not above
breaking them intentionally someday...)
Thanks to Andres Erbsen for discussions on how to do this bit properly.
[*] Ignoring the pervasive bn_correct_top problem for the moment.
Change-Id: Ide099a9db8249cb6549be99c5f8791a39692ea81
Reviewed-on: https://boringssl-review.googlesource.com/24204
Reviewed-by: Adam Langley <agl@google.com>
ARMv8 kindly deprecated most of its IT instructions in Thumb mode.
These files are taken from upstream and are used on both ARMv7 and ARMv8
processors. Accordingly, silence the warnings by marking the file as
targetting ARMv7. In other files, they were accidentally silenced anyway
by way of the existing .arch lines.
This can be reproduced by building with the new NDK and passing
-DCMAKE_ASM_FLAGS=-march=armv8-a. Some of our downstream code ends up
passing that to the assembly.
Note this change does not attempt to arrange for ARMv8-A/T32 to get
code which honors the constraints. It only silences the warnings and
continues to give it the same ARMv7-A/Thumb-2 code that backwards
compatibility dictates it continue to run.
Bug: chromium:575886, b/63131949
Change-Id: I24ce0b695942eaac799347922b243353b43ad7df
Reviewed-on: https://boringssl-review.googlesource.com/24166
Reviewed-by: Adam Langley <agl@google.com>
This makes it difficult to build against the NDK's toolchain file. The
problem is __clang__ just means Clang is the frontend and implies
nothing about which assembler. When using as, it is fine. When using
clang-as on Linux, one needs a clang-as from this year.
The only places where we case about clang's integrated assembler are iOS
(where perlasm strips out .arch anyway) and build environments like
Chromium which have a regularly-updated clang. Thus we can remove this
now.
Bug: 39
Update-Note: Holler if this breaks the build. If it doesn't break the
build, you can probably remove any BORINGSSL_CLANG_SUPPORTS_DOT_ARCH
or explicit -march armv8-a+crypto lines in your BoringSSL build.
Change-Id: I21ce54b14c659830520c2f1d51c7bd13e0980c68
Reviewed-on: https://boringssl-review.googlesource.com/24124
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It actually works fine. I just forgot one of the typedefs last time.
This gives a roughly 2x improvement on P-256 in clang-cl +
OPENSSL_SMALL, the configuration used by Chrome.
Before:
Did 1302 ECDH P-256 operations in 1015000us (1282.8 ops/sec)
Did 4250 ECDSA P-256 signing operations in 1047000us (4059.2 ops/sec)
Did 1750 ECDSA P-256 verify operations in 1094000us (1599.6 ops/sec)
After:
Did 3250 ECDH P-256 operations in 1078000us (3014.8 ops/sec)
Did 8250 ECDSA P-256 signing operations in 1016000us (8120.1 ops/sec)
Did 3250 ECDSA P-256 verify operations in 1063000us (3057.4 ops/sec)
(These were taken on a VM, so the measurements are extremely noisy, but
this sort of improvement is visible regardless.)
Alas, we do need a little extra bit of fiddling because division does
not work (crbug.com/787617).
Bug: chromium:787617
Update-Note: This removes the MSan uint128_t workaround which does not
appear to be necessary anymore.
Change-Id: I8361314608521e5bdaf0e7eeae7a02c33f55c69f
Reviewed-on: https://boringssl-review.googlesource.com/23984
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The fiat-crypto-generated code uses the Montgomery form implementation
strategy, for both 32-bit and 64-bit code.
64-bit throughput seems slower, but the difference is smaller than noise between repetitions (-2%?)
32-bit throughput has decreased significantly for ECDH (-40%). I am
attributing this to the change from varibale-time scalar multiplication
to constant-time scalar multiplication. Due to the same bottleneck,
ECDSA verification still uses the old code (otherwise there would have
been a 60% throughput decrease). On the other hand, ECDSA signing
throughput has increased slightly (+10%), perhaps due to the use of a
precomputed table of multiples of the base point.
64-bit benchmarks (Google Cloud Haswell):
with this change:
Did 9126 ECDH P-256 operations in 1009572us (9039.5 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039832us (22119.0 ops/sec)
Did 8820 ECDSA P-256 verify operations in 1024242us (8611.2 ops/sec)
master (40e8c921ca):
Did 9340 ECDH P-256 operations in 1017975us (9175.1 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039820us (22119.2 ops/sec)
Did 8688 ECDSA P-256 verify operations in 1021108us (8508.4 ops/sec)
benchmarks on ARMv7 (LG Nexus 4):
with this change:
Did 150 ECDH P-256 operations in 1029726us (145.7 ops/sec)
Did 506 ECDSA P-256 signing operations in 1065192us (475.0 ops/sec)
Did 363 ECDSA P-256 verify operations in 1033298us (351.3 ops/sec)
master (2fce1beda0):
Did 245 ECDH P-256 operations in 1017518us (240.8 ops/sec)
Did 473 ECDSA P-256 signing operations in 1086281us (435.4 ops/sec)
Did 360 ECDSA P-256 verify operations in 1003846us (358.6 ops/sec)
64-bit tables converted as follows:
import re, sys, math
p = 2**256 - 2**224 + 2**192 + 2**96 - 1
R = 2**256
def convert(t):
x0, s1, x1, s2, x2, s3, x3 = t.groups()
v = int(x0, 0) + 2**64 * (int(x1, 0) + 2**64*(int(x2,0) + 2**64*(int(x3, 0)) ))
w = v*R%p
y0 = hex(w%(2**64))
y1 = hex((w>>64)%(2**64))
y2 = hex((w>>(2*64))%(2**64))
y3 = hex((w>>(3*64))%(2**64))
ww = int(y0, 0) + 2**64 * (int(y1, 0) + 2**64*(int(y2,0) + 2**64*(int(y3, 0)) ))
if ww != v*R%p:
print(x0,x1,x2,x3)
print(hex(v))
print(y0,y1,y2,y3)
print(hex(w))
print(hex(ww))
assert 0
return '{'+y0+s1+y1+s2+y2+s3+y3+'}'
fe_re = re.compile('{'+r'(\s*,\s*)'.join(r'(\d+|0x[abcdefABCDEF0123456789]+)' for i in range(4)) + '}')
print (re.sub(fe_re, convert, sys.stdin.read()).rstrip('\n'))
32-bit tables converted from 64-bit tables
Change-Id: I52d6e5504fcb6ca2e8b0ee13727f4500c80c1799
Reviewed-on: https://boringssl-review.googlesource.com/23244
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Along the way, this allows us to tidy up the invariants associated with
EC_SCALAR. They were fuzzy around ec_point_mul_scalar and some
computations starting from the digest in ECDSA. The latter I've put into
the type system with EC_LOOSE_SCALAR.
As for the former, Andres points out that particular EC implementations
are only good for scalars within a certain range, otherwise you may need
extra work to avoid the doubling case. To simplify curve
implementations, we reduce them fully rather than do the looser bit size
check, so they can have the stronger precondition to work with.
Change-Id: Iff9a0404f89adf8f7f914f8e8246c9f3136453f1
Reviewed-on: https://boringssl-review.googlesource.com/23664
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Credit to OSS-Fuzz for finding this.
CVE-2017-3738
(Imported from upstream's 5630661aecbea5fe3c4740f5fea744a1f07a6253 and
77d75993651b63e872244a3256e37967bb3c3e9e.)
Confirmed with Intel SDE that the fix makes the test vector pass and
that, without the fix, the test vector does not. (Well, we knew the
latter already, since it was our test vector.)
Change-Id: I167aa3407ddab3b434bacbd18e099c55aa40ac4c
Reviewed-on: https://boringssl-review.googlesource.com/23884
Reviewed-by: Adam Langley <agl@google.com>
We check that the private key is less than the order, but we forgot the
other end.
Update-Note: It's possible some caller was relying on this, but since
that function already checked the other half of the range, I'm
expecting this to be a no-op change.
Change-Id: I4a53357d7737735b3cfbe97d379c8ca4eca5d5ac
Reviewed-on: https://boringssl-review.googlesource.com/23665
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: Id8b69bb6103dd938f4c6d0d2ec24f3d50ba5513c
Update-Note: fixes b/70034392
Reviewed-on: https://boringssl-review.googlesource.com/23744
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Rejecting values where we'd previous called BN_nnmod may have been
overly ambitious. In the long run, all the supported ECC APIs (ECDSA*,
ECDH_compute_key, and probably some additional new ECDH API) will be
using the EC_SCALAR version anyway, so this doesn't really matter.
Change-Id: I79cd4015f2d6daf213e4413caa2a497608976f93
Reviewed-on: https://boringssl-review.googlesource.com/23584
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This is only a hair faster than the signing change, but still something.
I kept the call to BN_mod_inverse_odd as that appears to be faster
(constant time is not a concern for verification).
Before:
Did 22855 ECDSA P-224 verify operations in 3015099us (7580.2 ops/sec)
Did 21276 ECDSA P-256 verify operations in 3083284us (6900.4 ops/sec)
Did 2635 ECDSA P-384 verify operations in 3032582us (868.9 ops/sec)
Did 1240 ECDSA P-521 verify operations in 3068631us (404.1 ops/sec)
After:
Did 23310 ECDSA P-224 verify operations in 3056226us (7627.1 ops/sec)
Did 21210 ECDSA P-256 verify operations in 3035765us (6986.7 ops/sec)
Did 2666 ECDSA P-384 verify operations in 3023592us (881.7 ops/sec)
Did 1209 ECDSA P-521 verify operations in 3054040us (395.9 ops/sec)
Change-Id: Iec995b1a959dbc83049d0f05bdc525c14a95c28e
Reviewed-on: https://boringssl-review.googlesource.com/23077
Reviewed-by: Adam Langley <agl@google.com>
Hasse's theorem implies at most one subtraction is necessary. This is
still using BIGNUM for now because field elements
(EC_POINT_get_affine_coordinates_GFp) are BIGNUMs.
This gives an additional 2% speedup for signing.
Before:
Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec)
Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec)
Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec)
After:
Did 16000 ECDSA P-224 signing operations in 1054918us (15167.1 ops/sec)
Did 20000 ECDSA P-256 signing operations in 1037338us (19280.1 ops/sec)
Did 1045 ECDSA P-384 signing operations in 1049073us (996.1 ops/sec)
Did 484 ECDSA P-521 signing operations in 1085492us (445.9 ops/sec)
Change-Id: I2bfe214f968eca7a8e317928c0f3daf1a14bca90
Reviewed-on: https://boringssl-review.googlesource.com/23076
Reviewed-by: Adam Langley <agl@google.com>
None of the asymmetric crypto we inherented from OpenSSL is
constant-time because of BIGNUM. BIGNUM chops leading zeros off the
front of everything, so we end up leaking information about the first
word, in theory. BIGNUM functions additionally tend to take the full
range of inputs and then call into BN_nnmod at various points.
All our secret values should be acted on in constant-time, but k in
ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an
attempt to mitigate the BIGNUM leaks, would add a couple copies of the
order.
This does not work at all. k is used to compute two values: k^-1 and kG.
The first operation when computing k^-1 is to call BN_nnmod if k is out
of range. The entry point to our tuned constant-time curve
implementations is to call BN_nnmod if the scalar has too many bits,
which this causes. The result is both corrections are immediately undone
but cause us to do more variable-time work in the meantime.
Replace all these computations around k with the word-based functions
added in the various preceding CLs. In doing so, replace the BN_mod_mul
calls (which internally call BN_nnmod) with Montgomery reduction. We can
avoid taking k^-1 out of Montgomery form, which combines nicely with
Brian Smith's trick in 3426d10119. Along
the way, we avoid some unnecessary mallocs.
BIGNUM still affects the private key itself, as well as the EC_POINTs.
But this should hopefully be much better now. Also it's 10% faster:
Before:
Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec)
Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec)
Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec)
After:
Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec)
Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec)
Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec)
Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1
Reviewed-on: https://boringssl-review.googlesource.com/23075
Reviewed-by: Adam Langley <agl@google.com>
Imported from upstream's a78324d95bd4568ce2c3b34bfa1d6f14cddf92ef. I
think the "regression" part of that change is some tweak to BN_usub and
I guess the bn_*_words was to compensate for it, but we may as well
import it. Apparently the loop instruction is terrible.
Before:
Did 39871000 bn_add_words operations in 1000002us (39870920.3 ops/sec)
Did 38621750 bn_sub_words operations in 1000001us (38621711.4 ops/sec)
After:
Did 64012000 bn_add_words operations in 1000007us (64011551.9 ops/sec)
Did 81792250 bn_sub_words operations in 1000002us (81792086.4 ops/sec)
loop sets no flags (even doing the comparison to zero without ZF) while
dec sets all flags but CF, so Andres and I are assuming that because
this prevents Intel from microcoding it to dec/jnz, they otherwise can't
be bothered to add more circuitry since every compiler has internalized
by now to never use loop.
Change-Id: I3927cd1c7b707841bbe9963e3d4afd7ba9bd9b36
Reviewed-on: https://boringssl-review.googlesource.com/23344
Reviewed-by: Adam Langley <agl@google.com>
These allow precomputation of k, but bypass our nonce hardening and also
make it harder to excise BIGNUM. As a bonus, ECDSATest.SignTestVectors
is now actually covering the k^-1 and r computations.
Change-Id: I4c71dae162874a88a182387ac43999be9559ddd7
Reviewed-on: https://boringssl-review.googlesource.com/23074
Reviewed-by: Adam Langley <agl@google.com>
wpa_supplicant appear to be using these.
Change-Id: I1f220cae69162901bcd9452e8daf67379c5e276c
Reviewed-on: https://boringssl-review.googlesource.com/23324
Reviewed-by: Steven Valdez <svaldez@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
mem.h for |OPENSSL_cleanse| and bn/internal.h for things like
|bn_less_than_words| and |bn_correct_top|.
Change-Id: I3c447a565dd9e4f18fb2ff5d59f80564b4df8cea
Reviewed-on: https://boringssl-review.googlesource.com/23164
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: Id12ab478b6ba441fb1b6f4c2f9479384fc3fbdb6
Reviewed-on: https://boringssl-review.googlesource.com/23144
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
|EC_POINT_mul| is almost exclusively used with reduced scalars, with
this exception. This comes from consumers following NIST SP 800-56A
section 5.6.2.3.2. (Though all our curves have cofactor one, so this
check isn't useful.)
Add a test for this so we don't accidentally break it.
Change-Id: I42492db38a1ea03acec4febdd7945c8a3933530a
Reviewed-on: https://boringssl-review.googlesource.com/23084
Reviewed-by: Adam Langley <agl@google.com>
I still need to revive the original CL, but right now I'm interested in
giving every EC_GROUP an order_mont and having different ownership of
that field between built-in and custom groups is kind of a nuisance. If
I'm going to do that anyway, better to avoid computing the entire
EC_GROUP in one go.
I'm using some manual locking rather than CRYPTO_once here so that it
behaves well in the face of malloc errors. Not that we especially care,
but it was easy to do.
This speeds up our ECDH benchmark a bit which otherwise must construct the
EC_GROUP each time (matching real world usage).
Before:
Did 7619 ECDH P-224 operations in 1003190us (7594.8 ops/sec)
Did 7518 ECDH P-256 operations in 1060844us (7086.8 ops/sec)
Did 572 ECDH P-384 operations in 1055878us (541.7 ops/sec)
Did 264 ECDH P-521 operations in 1062375us (248.5 ops/sec)
After:
Did 8415 ECDH P-224 operations in 1066695us (7888.9 ops/sec)
Did 7952 ECDH P-256 operations in 1022819us (7774.6 ops/sec)
Did 572 ECDH P-384 operations in 1055817us (541.8 ops/sec)
Did 264 ECDH P-521 operations in 1060008us (249.1 ops/sec)
Bug: 20
Change-Id: I7446cd0a69a840551dcc2dfabadde8ee1e3ff3e2
Reviewed-on: https://boringssl-review.googlesource.com/23073
Reviewed-by: Adam Langley <agl@google.com>
Later code will take advantage of these invariants. Enforcing them on
custom curves avoids making them go through a custom codepath.
Change-Id: I23cee72a90c2e4846b41e03e6be26bc3abeb4a45
Reviewed-on: https://boringssl-review.googlesource.com/23072
Reviewed-by: Adam Langley <agl@google.com>
These can be used to invert values in ECDSA. Unlike their BIGNUM
counterparts, the caller is responsible for taking values in and out of
Montgomery domain. This will save some work later on in the ECDSA
computation.
Change-Id: Ib7292900a0fdeedce6cb3e9a9123c94863659043
Reviewed-on: https://boringssl-review.googlesource.com/23071
Reviewed-by: Adam Langley <agl@google.com>
These use the square and multiply functions added earlier.
Change-Id: I723834f9a227a9983b752504a2d7ce0223c43d24
Reviewed-on: https://boringssl-review.googlesource.com/23070
Reviewed-by: Adam Langley <agl@google.com>
bn_from_montgomery_in_place is actually constant-time. It is, of course,
only used by non-constant-time BIGNUM callers, but that will soon be
fixed.
Change-Id: I2b2c9943dc3b8d6a4b5b19a5bc4fa9ebad532bac
Reviewed-on: https://boringssl-review.googlesource.com/23069
Reviewed-by: Adam Langley <agl@google.com>
As part of excising BIGNUM from EC scalars, we will need a "words"
version of BN_mod_mul_montgomery. That, in turn, requires BN_sqr and
BN_mul for cases where we don't have bn_mul_mont.
BN_sqr and BN_mul have a lot of logic in there, with the most complex
cases being not even remotely constant time. Fortunately, those only
apply to RSA-sized numbers, not EC-sized numbers. (With the exception, I
believe, of 32-bit P-521 which just barely exceeds the cutoff.) Imposing
a limit also makes it easier to stack-allocate temporaries (BN_CTX
serves a similar purpose in BIGNUM).
Extract bn_mul_small and bn_sqr_small and test them as part of
bn_tests.txt. Later changes will build on these.
If we end up reusing these functions for RSA in the future (though that
would require tending to the egregiously non-constant-time code in the
no-asm build), we probably want to extract a version where there is an
explicit tmp parameter as in bn_sqr_normal rather than the stack bits.
Change-Id: If414981eefe12d6664ab2f5e991a359534aa7532
Reviewed-on: https://boringssl-review.googlesource.com/23068
Reviewed-by: Adam Langley <agl@google.com>
Also replace a pointless call to bn_mul_words with a memset.
Change-Id: Ief30ddab0e84864561b73fe2776bd0477931cf7f
Reviewed-on: https://boringssl-review.googlesource.com/23066
Reviewed-by: Adam Langley <agl@google.com>
This rewrites the internals with a "words" variant that can avoid
bn_correct_top. It still ultimately calls bn_correct_top as the calling
convention is sadly still BIGNUM, but we can lift that calling
convention out incrementally.
Performance seems to be comparable, if not faster.
Before:
Did 85000 ECDSA P-256 signing operations in 5030401us (16897.3 ops/sec)
Did 34278 ECDSA P-256 verify operations in 5048029us (6790.4 ops/sec)
After:
Did 85000 ECDSA P-256 signing operations in 5021057us (16928.7 ops/sec)
Did 34086 ECDSA P-256 verify operations in 5010416us (6803.0 ops/sec)
Change-Id: I1159746dfcc00726dc3f28396076a354556e6e7d
Reviewed-on: https://boringssl-review.googlesource.com/23065
Reviewed-by: Adam Langley <agl@google.com>
BN_from_montgomery_word doesn't have a constant memory access pattern.
Replace the pointer trick with constant_time_select_w. There is, of
course, still the bn_correct_top leak pervasive in BIGNUM itself.
I wasn't able to measure a performance on RSA operations before or after
this change, but the benchmarks would vary wildly run to run. But one
would assume the logic here is nothing compared to the actual reduction.
Change-Id: Ide761fde3a091a93679f0a803a287aa5d0d4600d
Reviewed-on: https://boringssl-review.googlesource.com/22904
Reviewed-by: Adam Langley <agl@google.com>
We don't currently have test coverage for the order_mont bits (or lack
thereof) for custom curves.
Change-Id: I865d547c783226a5a3d3d203e10b0e59bad36984
Reviewed-on: https://boringssl-review.googlesource.com/23064
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
This was primarily for my own understanding, but this should hopefully
also be clearer and more amenable to using unsigned indices later.
Change-Id: I09cc3d55de0f7d9284d3b3168d8b0446274b2ab7
Reviewed-on: https://boringssl-review.googlesource.com/22889
Reviewed-by: Adam Langley <agl@google.com>
Normal shifts do the trick just fine and are less likely to tempt the
compiler into inserting a jump.
Change-Id: Iaa1da1b6f986fd447694fcde8f3525efb9eeaf11
Reviewed-on: https://boringssl-review.googlesource.com/22888
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: I482093000ee2e4ba371c78b4f7f8e8b121e71640
Reviewed-on: https://boringssl-review.googlesource.com/22886
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
We capitalize things Go-style.
Change-Id: Id002efb8a85e4e1886164421bba059d9ca425964
Reviewed-on: https://boringssl-review.googlesource.com/22885
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
BN_generate_dsa_nonce will never generate a zero value of k.
Change-Id: I06964b815bc82aa678ffbc80664f9d788cf3851d
Reviewed-on: https://boringssl-review.googlesource.com/22884
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Even without strict-aliasing, C does not allow casting pointers to types
that don't match their alignment. After this change, UBSan is happy with
our code at default settings but for the negative left shift language
bug.
Note: architectures without unaligned loads do not generate the same
code for memcpy and pointer casts. But even ARMv6 can perform unaligned
loads and stores (ARMv5 couldn't), so we should be okay here.
Before:
Did 11086000 AES-128-GCM (16 bytes) seal operations in 5000391us (2217026.6 ops/sec): 35.5 MB/s
Did 370000 AES-128-GCM (1350 bytes) seal operations in 5005208us (73923.0 ops/sec): 99.8 MB/s
Did 63000 AES-128-GCM (8192 bytes) seal operations in 5029958us (12525.0 ops/sec): 102.6 MB/s
Did 9894000 AES-256-GCM (16 bytes) seal operations in 5000017us (1978793.3 ops/sec): 31.7 MB/s
Did 316000 AES-256-GCM (1350 bytes) seal operations in 5005564us (63129.7 ops/sec): 85.2 MB/s
Did 54000 AES-256-GCM (8192 bytes) seal operations in 5054156us (10684.3 ops/sec): 87.5 MB/s
After:
Did 11026000 AES-128-GCM (16 bytes) seal operations in 5000197us (2205113.1 ops/sec): 35.3 MB/s
Did 370000 AES-128-GCM (1350 bytes) seal operations in 5005781us (73914.5 ops/sec): 99.8 MB/s
Did 63000 AES-128-GCM (8192 bytes) seal operations in 5032695us (12518.1 ops/sec): 102.5 MB/s
Did 9831750 AES-256-GCM (16 bytes) seal operations in 5000010us (1966346.1 ops/sec): 31.5 MB/s
Did 316000 AES-256-GCM (1350 bytes) seal operations in 5005702us (63128.0 ops/sec): 85.2 MB/s
Did 54000 AES-256-GCM (8192 bytes) seal operations in 5053642us (10685.4 ops/sec): 87.5 MB/s
(Tested with the no-asm builds; most of this code isn't reachable
otherwise.)
Change-Id: I025c365d26491abed0116b0de3b7612159e52297
Reviewed-on: https://boringssl-review.googlesource.com/22804
Reviewed-by: Adam Langley <agl@google.com>
These functions don't appear to do any stack manipulation thus all they
need are start/end directives in order for the correct CFI tables to be
emitted.
Change-Id: I4c94a9446030d363fa4bcb7c8975c689df3d21dc
Reviewed-on: https://boringssl-review.googlesource.com/22765
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: Id70cfc78c8d103117d4c2195206b023a5d51edc3
Reviewed-on: https://boringssl-review.googlesource.com/22764
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It's not clear if it's a feature or bug, but binutils-2.29[.1]
interprets 'adr' instruction with Thumb2 code reference differently,
in a way that affects calculation of addresses of constants' tables.
(Imported from upstream's b82acc3c1a7f304c9df31841753a0fa76b5b3cda.)
Change-Id: Ia0f5233a9fcfaf18b9d1164bf1c88217c0cbb60d
Reviewed-on: https://boringssl-review.googlesource.com/22724
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Generating a 2048-bit RSA key with e = 3 (don't do this), the failure
rate at 5*bits iterations appears to be around 7 failures in 1000 tries.
Bump the limit up to 32*bits. This should give a failure rate of around
2 failures in 10^14 tries.
(The FIPS 186-4 algorithm is meant for saner values of e, like 65537. e
= 3 implies a restrictive GCD requirement: the primes must both be 2 mod
3.)
Change-Id: Icd373f61e2eb90df5afaff9a0fc2b2fbb6ec3f0a
Reviewed-on: https://boringssl-review.googlesource.com/22584
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It always returns one, so just void it.
Change-Id: I8733cc3d6b20185e782cf0291e9c0dc57712bb63
Reviewed-on: https://boringssl-review.googlesource.com/22564
Reviewed-by: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Credit to OSS-Fuzz for finding this.
CVE-2017-3736
(Imported from upstream's 668a709a8d7ea374ee72ad2d43ac72ec60a80eee and
420b88cec8c6f7c67fad07bf508dcccab094f134.)
This bug does not affect BoringSSL as we do not enable the ADX code.
Note the test vector had to be tweaked to take things in and out of
Montgomery form. (There may be something to be said for test vectors for
just BN_mod_mul_montgomery, though we'd need separate 64-bit and 32-bit
ones because R can be different.)
Change-Id: I832070731ac1c5f893f9c1746892fc4a32f023f5
Reviewed-on: https://boringssl-review.googlesource.com/22484
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This partially reverts commit 38636aba74.
Some build on Android seems to break now. I'm not really sure what the
situation is, but if the weird common symbols are still there (can we
remove them?), they probably ought to have the right flags.
Change-Id: Ief589d763d16b995ac6be536505acf7596a87b30
Reviewed-on: https://boringssl-review.googlesource.com/22404
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Those EXPECTs should be ASSERTs to ensure bn is not null.
Change-Id: Icb54c242ffbde5f8eaa67f19f214c9eef13705ea
Reviewed-on: https://boringssl-review.googlesource.com/22366
Reviewed-by: Steven Valdez <svaldez@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>