OpenSSL used to only forbid it on the server in plain PSK and allow it on the
client. Enforce it properly on both sides. My read of the rule in RFC 5246 ("A
non-anonymous server can optionally request a certificate") and in RFC 4279
("The Certificate and CertificateRequest payloads are omitted from the
response.") is that client auth happens iff we're certificate-based.
The line in RFC 4279 is under the plain PSK section, but that doesn't make a
whole lot of sense and there is only one diagram. PSK already authenticates
both sides. I think the most plausible interpretation is that this is for
certificate-based ciphers.
Change-Id: If195232c83f21e011e25318178bb45186de707e6
Reviewed-on: https://boringssl-review.googlesource.com/7942
Reviewed-by: David Benjamin <davidben@google.com>
The specification, sadly, did not say that servers MUST NOT send it, only that
they are "not expected to" do anything with the client extension. Accordingly,
we decided to tolerate this. Add a test for this so that we check this
behavior.
This test also ensures that the original session's value for it carries over.
Change-Id: I38c738f218a09367c9d8d1b0c4d68ab5cbec730e
Reviewed-on: https://boringssl-review.googlesource.com/7860
Reviewed-by: Adam Langley <agl@google.com>
This allows an application to override the default of 1 second, which
is what's instructed in RFC 6347 but is not an absolute requirement.
Change-Id: I0bbb16e31990fbcab44a29325b6ec7757d5789e5
Reviewed-on: https://boringssl-review.googlesource.com/7930
Reviewed-by: David Benjamin <davidben@google.com>
This is just kind of a silly thing to do. NSS doesn't allow them either. Fatal
alerts would kill the connection regardless and warning alerts are useless. We
previously stopped accepting fragmented alerts but still allowed them doubled
up.
This is in preparation for pulling the shared alert processing code between TLS
and DTLS out of read_bytes into some common place.
Change-Id: Idbef04e39ad135f9601f5686d41f54531981e0cf
Reviewed-on: https://boringssl-review.googlesource.com/7451
Reviewed-by: Emily Stark (Dunn) <estark@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Otherwise it's confusing if you mistype the test name.
Change-Id: Idf32081958f85f3b5aeb8993a07f6975c27644f8
Reviewed-on: https://boringssl-review.googlesource.com/7500
Reviewed-by: Emily Stark (Dunn) <estark@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Align all unexpected messages on SSL_R_UNEXPECTED_MESSAGE. Make the SSL 3.0
case the exceptional case. In doing so, make sure the SSL 3.0
SSL_VERIFY_FAIL_IF_NO_PEER_CERT case has its own test as that's a different
handshake shape.
Change-Id: I1a539165093fbdf33e2c1b25142f058aa1a71d83
Reviewed-on: https://boringssl-review.googlesource.com/7421
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
If we're doing substring matching, we should at least include the delimiter.
Change-Id: I98bee568140d0304bbb6a2788333dbfca044114c
Reviewed-on: https://boringssl-review.googlesource.com/7420
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
In TLS, you never skip the Certificate message. It may be empty, but its
presence is determined by CertificateRequest. (This is sensible.)
In SSL 3.0, the client omits the Certificate message. This means you need to
probe and may receive either Certificate or ClientKeyExchange (thankfully,
ClientKeyExchange is not optional, or we'd have to probe at ChangeCipherSpec).
We didn't have test coverage for this, despite some of this logic being a
little subtle asynchronously. Fix this.
Change-Id: I149490ae5506f02fa0136cb41f8fea381637bf45
Reviewed-on: https://boringssl-review.googlesource.com/7419
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Also add no-certificate cases to the state machine coverage tests.
Change-Id: I88a80df6f3ea69aabc978dd356abcb9e309e156f
Reviewed-on: https://boringssl-review.googlesource.com/7417
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
If a Read or Write blocks for too long, time out the operation. Otherwise, some
kinds of test failures result in hangs, which prevent the test harness from
progressing. (Notably, OpenSSL currently has a lot of those failure modes and
upstream expressed interest in being able to run the tests to completion.)
Go's APIs want you to send an absolute timeout, to avoid problems when a Read
is split into lots of little Reads. But we actively want the timer to reset in
that case, so this needs a trivial adapter.
The default timeout is set at 15 seconds for now. If this becomes a problem, we
can extend it or build a more robust deadlock detector given an out-of-band
channel (shim tells runner when it's waiting on data, abort if we're also
waiting on data at the same time). But I don't think we'll need that
complexity. 15 seconds appears fine for both valgrind and running tests on a
Nexus 4.
BUG=460189
Change-Id: I6463fd36058427d883b526044da1bbefba851785
Reviewed-on: https://boringssl-review.googlesource.com/7380
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
This can be used to get some initial corpus for fuzzing.
Change-Id: Ifcd365995b54d202c4a2674f49e7b28515f36025
Reviewed-on: https://boringssl-review.googlesource.com/7289
Reviewed-by: Adam Langley <agl@google.com>
It's useful to make sure our fuzzer mode works. Not all tests pass, but most
do. (Notably the negative tests for everything we've disabled don't work.) We
can also use then use runner to record fuzzer-mode transcripts with the ciphers
correctly nulled.
Change-Id: Ie41230d654970ce6cf612c0a9d3adf01005522c6
Reviewed-on: https://boringssl-review.googlesource.com/7288
Reviewed-by: Adam Langley <agl@google.com>
Both sides' signature and Finished checks still occur, but the results
are ignored. Also, all ciphers behave like the NULL cipher.
Conveniently, this isn't that much code since all ciphers and their size
computations funnel into SSL_AEAD_CTX.
This does carry some risk that we'll mess up this code. Up until now, we've
tried to avoid test-only changes to the SSL stack.
There is little risk that anyone will ship a BORINGSSL_UNSAFE_FUZZER_MODE build
for anything since it doesn't interop anyway. There is some risk that we'll end
up messing up the disableable checks. However, both skipped checks have
negative tests in runner (see tests that set InvalidSKXSignature and
BadFinished). For good measure, I've added a server variant of the existing
BadFinished test to this CL, although they hit the same code.
Change-Id: I37f6b4d62b43bc08fab7411965589b423d86f4b8
Reviewed-on: https://boringssl-review.googlesource.com/7287
Reviewed-by: Adam Langley <agl@google.com>
Found by libFuzzer combined with some experimental unsafe-fuzzer-mode patches
(to be uploaded once I've cleaned them up a bit) to disable all those pesky
cryptographic checks in the protocol.
Change-Id: I9153164fa56a0c2262c4740a3236c2b49a596b1b
Reviewed-on: https://boringssl-review.googlesource.com/7282
Reviewed-by: Adam Langley <agl@google.com>
If LeakSanitizer fires something on a test that's expected to fail, runner will
swallow it. Have stderr output always end in a "--- DONE ---" marker and treat
all output following that as a test failure.
Change-Id: Ia8fd9dfcaf48dd23972ab8f906d240bcb6badfe2
Reviewed-on: https://boringssl-review.googlesource.com/7281
Reviewed-by: Adam Langley <agl@google.com>
Take the mappings for MD5 and SHA-224 values out of the code altogether. This
aligns with the current TLS 1.3 draft.
For MD5, this is a no-op. It is not currently possible to configure accepted
signature algorithms, MD5 wasn't in the hardcoded list, and we already had a
test ensuring we enforced our preferences correctly. MD5 also wasn't in the
default list of hashes our keys could sign and no one overrides it with a
different hash.
For SHA-224, this is not quite a no-op. The hardcoded accepted signature
algorithms list included SHA-224, so this will break servers relying on that.
However, Chrome's metrics have zero data points of servers picking SHA-224 and
no other major browser includes it. Thus that should be safe.
SHA-224 was also in the default list of hashes we are willing to sign. For
client certificates, Chromium's abstractions already did not allow signing
SHA-224, so this is a no-op there. For servers, this will break any clients
which only accept SHA-224. But no major browsers do this and I am not aware of
any client implementation which does such ridiculous thing.
(SHA-1's still in there. Getting rid of that one is going to take more effort.)
Change-Id: I6a765fdeea9e19348e409d58a0eac770b318e599
Reviewed-on: https://boringssl-review.googlesource.com/7020
Reviewed-by: Adam Langley <agl@google.com>
For TLS, this machinery only exists to swallow no_certificate alerts
which only get sent in an SSL 3.0 codepath anyway. It's much less a
no-op for SSL 3.0 which, strictly speaking, has only a subset of TLS's
alerts.
This gets messy around version negotiation because of the complex
relationship between enc_method, have_version, and version which all get
set at different times. Given that SSL 3.0 is nearly dead and all these
alerts are fatal to the connection anyway, this doesn't seem worth
carrying around. (It doesn't work very well anyway. An SSLv3-only server
may still send a record_overflow alert before version negotiation.)
This removes the last place enc_method is accessed prior to version
negotiation.
Change-Id: I79a704259fca69e4df76bd5a6846c9373f46f5a9
Reviewed-on: https://boringssl-review.googlesource.com/6843
Reviewed-by: Adam Langley <alangley@gmail.com>
We haven't had problems with this, but make sure it stays that way.
Bogus signature algorithms are already covered.
Change-Id: I085350d89d79741dba3f30fc7c9f92de16bf242a
Reviewed-on: https://boringssl-review.googlesource.com/6910
Reviewed-by: David Benjamin <davidben@google.com>
This is a minor regression from
https://boringssl-review.googlesource.com/5235.
If the client, for whatever reason, had an ID-based session but also
supports tickets, it will send non-empty ID + empty ticket extension.
If the ticket extension is non-empty, then the ID is not an ID but a
dummy signaling value, so 5235 avoided looking it up. But if it is
present and empty, the ID is still an ID and should be looked up.
This shouldn't have any practical consequences, except if a server
switched from not supporting tickets and then started supporting it,
while keeping the session cache fixed.
Add a test for this case, and tighten up existing ID vs ticket tests so
they fail if we resume with the wrong type.
Change-Id: Id4d08cd809af00af30a2b67fe3a971078e404c75
Reviewed-on: https://boringssl-review.googlesource.com/6554
Reviewed-by: Adam Langley <alangley@gmail.com>
We don't actually have an API to let you know if the value is legal to
interpret as a curve ID. (This was kind of a poor API. Oh well.) Also add tests
for key_exchange_info. I've intentionally left server-side plain RSA missing
for now because the SSL_PRIVATE_KEY_METHOD abstraction only gives you bytes and
it's probably better to tweak this API instead.
(key_exchange_info also wasn't populated on the server, though due to a
rebasing error, that fix ended up in the parent CL. Oh well.)
Change-Id: I74a322c8ad03f25b02059da7568c9e1a78419069
Reviewed-on: https://boringssl-review.googlesource.com/6783
Reviewed-by: Adam Langley <agl@google.com>
The new curve is not enabled by default.
As EC_GROUP/EC_POINT is a bit too complex for X25519, this introduces an
SSL_ECDH_METHOD abstraction which wraps just the raw ECDH operation. It
also tidies up some of the curve code which kept converting back and
force between NIDs and curve IDs. Now everything transits as curve IDs
except for API entry points (SSL_set1_curves) which take NIDs. Those
convert immediately and act on curve IDs from then on.
Note that, like the Go implementation, this slightly tweaks the order of
operations. The client sees the server public key before sending its
own. To keep the abstraction simple, SSL_ECDH_METHOD expects to
generate a keypair before consuming the peer's public key. Instead, the
client handshake stashes the serialized peer public value and defers
parsing it until it comes time to send ClientKeyExchange. (This is
analogous to what it was doing before where it stashed the parsed peer
public value instead.)
It still uses TLS 1.2 terminology everywhere, but this abstraction should also
be compatible with TLS 1.3 which unifies (EC)DH-style key exchanges.
(Accordingly, this abstraction intentionally does not handle parsing the
ClientKeyExchange/ServerKeyExchange framing or attempt to handle asynchronous
plain RSA or the authentication bits.)
BUG=571231
Change-Id: Iba09dddee5bcdfeb2b70185308e8ab0632717932
Reviewed-on: https://boringssl-review.googlesource.com/6780
Reviewed-by: Adam Langley <agl@google.com>
It already wasn't in the default list and no one enables it. Remove it
altogether. (It's also gone from the current TLS 1.3 draft.)
Change-Id: I143d07d390d186252204df6bdb8ffd22649f80e3
Reviewed-on: https://boringssl-review.googlesource.com/6775
Reviewed-by: Adam Langley <agl@google.com>
Apple these days ships lldb without gdb. Teach runner how to launch it
too.
Change-Id: I25f845f84f1c87872a9e3bc4b7fe3e7344e8c1f7
Reviewed-on: https://boringssl-review.googlesource.com/6769
Reviewed-by: Adam Langley <agl@google.com>
Only ECDHE-based ciphers are implemented. To ease the transition, the
pre-standard cipher shares a name with the standard one. The cipher rule parser
is hacked up to match the name to both ciphers. From the perspective of the
cipher suite configuration language, there is only one cipher.
This does mean it is impossible to disable the old variant without a code
change, but this situation will be very short-lived, so this is fine.
Also take this opportunity to make the CK and TXT names align with convention.
Change-Id: Ie819819c55bce8ff58e533f1dbc8bef5af955c21
Reviewed-on: https://boringssl-review.googlesource.com/6686
Reviewed-by: Adam Langley <agl@google.com>
In preparation for implementing the RFC 7539 variant to test against.
Change-Id: I0ce5e856906e00925ad1d849017f9e7fda087a8e
Reviewed-on: https://boringssl-review.googlesource.com/6683
Reviewed-by: Adam Langley <agl@google.com>
This uses ssl3_read_bytes for now. We still need to dismantle that
function and then invert the handshake state machine, but this gets
things closer to the right shape as an intermediate step and is a large
chunk in itself. It simplifies a lot of the CCS/handshake
synchronization as a lot of the invariants much more clearly follow from
the handshake itself.
Tests need to be adjusted since this changes some error codes. Now all
the CCS/Handshake checks fall through to the usual
SSL_R_UNEXPECTED_RECORD codepath. Most of what used to be a special-case
falls out naturally. (If half of Finished was in the same record as the
pre-CCS message, that part of the handshake record would have been left
unconsumed, so read_change_cipher_spec would have noticed, just like
read_app_data would have noticed.)
Change-Id: I15c7501afe523d5062f0e24a3b65f053008d87be
Reviewed-on: https://boringssl-review.googlesource.com/6642
Reviewed-by: Adam Langley <agl@google.com>
Cover not just the wrong version, but also other mistakes.
Change-Id: I46f05a9a37b7e325adc19084d315a415777d3a46
Reviewed-on: https://boringssl-review.googlesource.com/6610
Reviewed-by: Adam Langley <agl@google.com>
I don't think we're ever going to manage to enforce this, and it doesn't
seem worth the trouble. We don't support application protocols which use
renegotiation outside of the HTTP/1.1 mid-stream client auth hack.
There, it's on the server to reject legacy renegotiations.
This removes the last of SSL_OP_ALL.
Change-Id: I996fdeaabf175b6facb4f687436549c0d3bb0042
Reviewed-on: https://boringssl-review.googlesource.com/6580
Reviewed-by: Adam Langley <agl@google.com>
RFC 5746 forbids a server from downgrading or upgrading
renegotiation_info support. Even with SSL_OP_LEGACY_SERVER_CONNECT set
(the default), we can still enforce a few things.
I do not believe this has practical consequences. The attack variant
where the server half is prefixed does not involve a renegotiation on
the client. The converse where the client sees the renegotiation and
prefix does, but we only support renego for the mid-stream HTTP/1.1
client auth hack, which doesn't do this. (And with triple-handshake,
HTTPS clients should be requiring the certificate be unchanged across
renego which makes this moot.)
Ultimately, an application which makes the mistake of using
renegotiation needs to be aware of what exactly that means and how to
handle connection state changing mid-stream. We make renego opt-in now,
so this is a tenable requirement.
(Also the legacy -> secure direction would have been caught by the
server anyway since we send a non-empty RI extension.)
Change-Id: I915965c342f8a9cf3a4b6b32f0a87a00c3df3559
Reviewed-on: https://boringssl-review.googlesource.com/6559
Reviewed-by: Adam Langley <agl@google.com>
This dates to SSLeay 0.8.0 (or earlier). The use counter sees virtually
no hits.
Change-Id: Iff4c8899d5cb0ba4afca113c66d15f1d980ffe41
Reviewed-on: https://boringssl-review.googlesource.com/6558
Reviewed-by: Adam Langley <agl@google.com>
This dates to SSLeay 0.9.0. The Internet seems to have completely
forgotten what "D5" is. (I can't find reference to it beyond
documentation of this quirk.) The use counter we added sees virtually no
hits.
Change-Id: I9781d401acb98ce3790b1b165fc257a6f5e9b155
Reviewed-on: https://boringssl-review.googlesource.com/6557
Reviewed-by: Adam Langley <agl@google.com>
yaSSL has a couple of bugs in their DH client implementation. This
change works around the worst of the two.
Firstly, they expect the the DH public value to be the same length as
the prime. This change pads the public value as needed to ensure this.
Secondly, although they handle the first byte of the shared key being
zero, they don't handle the case of the second, third, etc bytes being
zero. So whenever that happens the handshake fails. I don't think that
there's anything that we can do about that one.
Change-Id: I789c9e5739f19449473305d59fe5c3fb9b4a6167
Reviewed-on: https://boringssl-review.googlesource.com/6578
Reviewed-by: David Benjamin <davidben@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
dh.c had a 10k-bit limit but it wasn't quite correctly enforced. However,
that's still 1.12s of jank on the IO thread, which is too long. Since the SSL
code consumes DHE groups from the network, it should be responsible for
enforcing what sanity it needs on them.
Costs of various bit lengths on 2013 Macbook Air:
1024 - 1.4ms
2048 - 14ms
3072 - 24ms
4096 - 55ms
5000 - 160ms
10000 - 1.12s
UMA says that DHE groups are 0.2% 4096-bit and otherwise are 5.5% 2048-bit and
94% 1024-bit and some noise. Set the limit to 4096-bit to be conservative,
although that's already quite a lot of jank.
BUG=554295
Change-Id: I8e167748a67e4e1adfb62d73dfff094abfa7d215
Reviewed-on: https://boringssl-review.googlesource.com/6464
Reviewed-by: Adam Langley <agl@google.com>
The current check has two problems:
- It only runs on the server, where there isn't a curve list at all. This was a
mistake in https://boringssl-review.googlesource.com/1843 which flipped it
from client-only to server-only.
- It only runs in TLS 1.2, so one could bypass it by just negotiating TLS 1.1.
Upstream added it as part of their Suite B mode, which requires 1.2.
Move it elsewhere. Though we do not check the entire chain, leaving that to the
certificate verifier, signatures made by the leaf certificate are made by the
SSL/TLS stack, so it's reasonable to check the curve as part of checking
suitability of a leaf.
Change-Id: I7c12f2a32ba946a20e9ba6c70eff23bebcb60bb2
Reviewed-on: https://boringssl-review.googlesource.com/6414
Reviewed-by: Adam Langley <agl@google.com>
This exposes the ServerKeyExchange signature hash type used in the most recent
handshake, for histogramming on the client.
BUG=549662
Change-Id: I8a4e00ac735b1ecd2c2df824112c3a0bc62332a7
Reviewed-on: https://boringssl-review.googlesource.com/6413
Reviewed-by: Adam Langley <agl@google.com>
This fixes a number of bugs with the original logic:
- If handshake messages are fragmented and writes need to be retried, frag_off
gets completely confused.
- The BIO_flush call didn't set rwstate, so it wasn't resumable at that point.
- The msg_callback call gets garbage because the fragment header would get
scribbled over the handshake buffer.
The original logic was also extremely confusing with how it handles init_off.
(init_off gets rewound to make room for the fragment header. Depending on
where you pause, resuming may or may not have already been rewound.)
For simplicity, just allocate a new buffer to assemble the fragment in and
avoid clobbering the old one. I don't think it's worth the complexity to
optimize that. If we want to optimize this sort of thing, not clobbering seems
better anyway because the message may need to be retransmitted. We could avoid
doing a copy when buffering the outgoing message for retransmission later.
We do still need to track how far we are in sending the current message via
init_off, so I haven't opted to disconnect this function from
init_{buf,off,num} yet.
Test the fix to the retry + fragment case by having the splitHandshake option
to the state machine tests, in DTLS, also clamp the MTU to force handshake
fragmentation.
Change-Id: I66f634d6c752ea63649db8ed2f898f9cc2b13908
Reviewed-on: https://boringssl-review.googlesource.com/6421
Reviewed-by: Adam Langley <agl@google.com>
This option causes clients to ignore HelloRequest messages completely.
This can be suitable in cases where a server tries to perform concurrent
application data and handshake flow, e.g. because they are trying to
“renew” symmetric keys.
Change-Id: I2779f7eff30d82163f2c34a625ec91dc34fab548
Reviewed-on: https://boringssl-review.googlesource.com/6431
Reviewed-by: David Benjamin <davidben@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
It's somewhat annoying to have to parse out the packetAdaptor mini-language.
Actually seeing those is only useful when debugging the adaptor itself, rather
than DTLS. Switch the order of the two middleware bits and add an escape hatch
to log the funny opcodes.
Change-Id: I249c45928a76b747d69f3ab972ea4d31e0680a62
Reviewed-on: https://boringssl-review.googlesource.com/6416
Reviewed-by: Adam Langley <agl@google.com>
Right whether NPN is advertised can only be configured globally on the SSL_CTX.
Rather than adding two pointers to each SSL*, add an options bit to disable it
so we may plumb in a field trial to disable NPN.
Chromium wants to be able to route a bit in to disable NPN, but it uses SSL_CTX
incorrectly and has a global one, so it can't disconnect the callback. (That
really needs to get fixed. Although it's not clear this necessarily wants to be
lifted up to SSL_CTX as far as Chromium's SSLClientSocket is concerned since
NPN doesn't interact with the session cache.)
BUG=526713
Change-Id: I49c86828b963eb341c6ea6a442557b7dfa190ed3
Reviewed-on: https://boringssl-review.googlesource.com/6351
Reviewed-by: Adam Langley <alangley@gmail.com>
RFC 5077 explicitly allows the server to change its mind and send no
ticket by sending an empty NewSessionTicket. See also upstream's
21b538d616b388fa0ce64ef54da3504253895cf8.
CBS_stow handles this case somewhat, so we won't get confused about
malloc(0) as upstream did. But we'll still fill in a bogus SHA-256
session ID, cache the session, and send a ClientHello with bogus session
ID but empty ticket extension. (The session ID field changes meaning
significantly when the ticket is or isn't empty. Non-empty means "ignore
the session ID, but echo if it resuming" while empty means "I support
tickets, but am offering this session ID".
The other behavior change is that a server which changes its mind on a
resumption handshake will no longer override the client's session cache
with a ticket-less session.
(This is kind of silly. Given that we don't get completely confused due
to CBS_stow, it might not be worth bothering with the rest. Mostly it
bugged me that we send an indicator session ID with no ticket.)
Change-Id: Id6b5bde1fe51aa3e1f453a948e59bfd1e2502db6
Reviewed-on: https://boringssl-review.googlesource.com/6340
Reviewed-by: Adam Langley <alangley@gmail.com>
Add a slightly richer API. Notably, one can configure ssl_renegotiate_once to
only accept the first renego.
Also, this API doesn't repeat the mistake I made with
SSL_set_reject_peer_renegotiations which is super-confusing with the negation.
Change-Id: I7eb5d534e3e6c553b641793f4677fe5a56451c71
Reviewed-on: https://boringssl-review.googlesource.com/6221
Reviewed-by: Adam Langley <agl@google.com>
SSL 3.0 used to have a nice and simple rule around extensions. They don't
exist. And then RFC 5746 came along and made this all extremely confusing.
In an SSL 3.0 server, rather than blocking ServerHello extension
emission when renegotiation_info is missing, ignore all ClientHello
extensions but renegotiation_info. This avoids a mismatch between local
state and the extensions with emit.
Notably if, for some reason, a ClientHello includes the session_ticket
extension, does NOT include renegotiation_info or the SCSV, and yet the
client or server are decrepit enough to negotiate SSL 3.0, the
connection will fail due to unexpected NewSessionTicket message.
See https://crbug.com/425979#c9 for a discussion of something similar
that came up in diagnosing https://poodle.io/'s buggy POODLE check.
This is analogous to upstream's
5a3d8eebb7667b32af0ccc3f12f314df6809d32d.
(Not supporting renego as a server in any form anyway, we may as well
completely ignore extensions, but then our extensions callbacks can't
assume the parse hooks are always called. This way the various NULL
handlers still function.)
Change-Id: Ie689a0e9ffb0369ef7a20ab4231005e87f32d5f8
Reviewed-on: https://boringssl-review.googlesource.com/6180
Reviewed-by: Adam Langley <agl@google.com>
This change makes the runner tests (in ssl/test/runner) act like a
normal Go test rather than being a Go binary. This better aligns with
some internal tools.
Thus, from this point onwards, one has to run the runner tests with `go
test` rather than `go run` or `go build && ./runner`.
This will break the bots.
Change-Id: Idd72c31e8e0c2b7ed9939dacd3b801dbd31710dd
Reviewed-on: https://boringssl-review.googlesource.com/6009
Reviewed-by: Matt Braithwaite <mab@google.com>
Reviewed-by: David Benjamin <davidben@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>