This is to simplify clearing unnecessary mallocs out of ec_wNAF_mul, and
perhaps to use it in tuned variable-time multiplication functions.
Change-Id: Ic390d2e8e20d0ee50f3643830a582e94baebba95
Reviewed-on: https://boringssl-review.googlesource.com/25149
Reviewed-by: Adam Langley <agl@google.com>
This cuts out another total_num-length array and simplifies things.
Leading zeros at the front of the schedule don't do anything, so it's
easier to just produce a fixed-length one. (I'm also hoping to
ultimately reuse this function in //third_party/fiat/p256.c and get the
best of both worlds for ECDSA verification; tuned field arithmetic
operations, precomputed table, and variable-time multiply.)
Change-Id: I771f4ff7dcfdc3ee0eff8d9038d6dc9a0be3d4e0
Reviewed-on: https://boringssl-review.googlesource.com/25148
Reviewed-by: Adam Langley <agl@google.com>
Note this switches from walking BN_num_bits to the full bit length of
the scalar. But that can only cause it to add a few extra zeros to the
front of the schedule, which r_is_at_infinity will skip over.
Change-Id: I91e087c9c03505566b68f75fb37dfb53db467652
Reviewed-on: https://boringssl-review.googlesource.com/25147
Reviewed-by: Adam Langley <agl@google.com>
This appears to be pointless. Before, we would have a 50% chance of
doing an inversion at each non-zero bit but the first
(r_is_at_infinity), plus a 50% chance of doing an inversion at the end.
Now we would have a 50% chance of doing an inversion at each non-zero
bit. That's the same number of coin flips.
Change-Id: I8158fd48601cb041188826d4f68ac1a31a6fbbbc
Reviewed-on: https://boringssl-review.googlesource.com/25146
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The optimization for wsize = 1 only kicks in for 19-bit primes. The
cases for b >= 800 and cannot happen due to EC_MAX_SCALAR_BYTES.
Change-Id: If5ca908563f027172cdf31c9a22342152fecd12f
Reviewed-on: https://boringssl-review.googlesource.com/25145
Reviewed-by: Adam Langley <agl@google.com>
Simplify things slightly. The probability of the scalar being small
enough to go down a window size is astronomically small. (2^-186 for
P-256 and 2^-84 for P-384.)
Change-Id: Ie879f0b06bcfd1e6e6e3bf3f54e0d7d6567525a4
Reviewed-on: https://boringssl-review.googlesource.com/25144
Reviewed-by: Adam Langley <agl@google.com>
The P-224 implementation was missing the optimization to avoid doing
extra work when asking for only one coordinate (ECDH and ECDSA both
involve an x-coordinate query). The P-256 implementation was missing the
optimization to do one less Montgomery reduction.
TODO - Benchmarks
Change-Id: I268d9c24737c6da9efaf1c73395b73dd97355de7
Reviewed-on: https://boringssl-review.googlesource.com/24690
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
EC_POINT_set_affine_coordinates_GFp already rejects coordinates which
are out of range. There's no need to double-check.
Change-Id: Id1685355c555dda66d2a14125cb0083342f37e53
Reviewed-on: https://boringssl-review.googlesource.com/24688
Reviewed-by: Adam Langley <agl@google.com>
p224-64.c can just write straight into the EC_POINT, as the other files
do, which saves the mess around BN_CTX. It's also more correct.
ec_point_set_Jprojective_coordinates_GFp abstracts out field_encode, but
then we would want to abstract out field_decode too when reading.
That then allows us to inline ec_point_set_Jprojective_coordinates_GFp
into ec_GFp_simple_point_set_affine_coordinates and get rid of an
unnecessary tower of helper functions. Also we can use the precomputed
value of one rather than recompute it each time.
Change-Id: I8282dc66a4a437f5a3b6a1a59cc39be4cb71ccf9
Reviewed-on: https://boringssl-review.googlesource.com/24687
Reviewed-by: Adam Langley <agl@google.com>
All the messing around with field_mul and field_sqr does the same thing
as calling EC_GROUP_get_curve_GFp. This is in preparation for ultimately
moving the field elements to an EC_FELEM type.
Where we draw the BIGNUM / EC_FELEM line determines what EC_FELEM
operations we need. Since we don't care much about the performance of
this function, leave it in BIGNUM so we don't need an EC_FELEM
BN_mod_sqrt just yet. We can push it down later if we feel so inclined.
Change-Id: Iec07240d40828df6b7a29fd1f430e3b390d5f506
Reviewed-on: https://boringssl-review.googlesource.com/24686
Reviewed-by: Adam Langley <agl@google.com>
This is to simplify
https://boringssl-review.googlesource.com/c/boringssl/+/24445/.
Setting or changing an EC_KEY's group after the public or private keys
have been configured is quite awkward w.r.t. consistency checks. It
becomes additionally messy if we mean to store private keys as
EC_SCALARs (and avoid the BIGNUM timing leak), whose size is
curve-dependent.
Instead, require that callers configure the group before setting either
half of the keypair. Additionally, reject EC_KEY_set_group calls that
change the group. This will simplify clearing one more BIGNUM timing
leak.
Update-Note: This will break code which sets the group and key in a
weird order. I checked calls of EC_KEY_new and confirmed they all
set the group first. If I missed any, let me know.
Change-Id: Ie89f90a318b31b6b98f71138e5ff3de5323bc9a6
Reviewed-on: https://boringssl-review.googlesource.com/24425
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It actually works fine. I just forgot one of the typedefs last time.
This gives a roughly 2x improvement on P-256 in clang-cl +
OPENSSL_SMALL, the configuration used by Chrome.
Before:
Did 1302 ECDH P-256 operations in 1015000us (1282.8 ops/sec)
Did 4250 ECDSA P-256 signing operations in 1047000us (4059.2 ops/sec)
Did 1750 ECDSA P-256 verify operations in 1094000us (1599.6 ops/sec)
After:
Did 3250 ECDH P-256 operations in 1078000us (3014.8 ops/sec)
Did 8250 ECDSA P-256 signing operations in 1016000us (8120.1 ops/sec)
Did 3250 ECDSA P-256 verify operations in 1063000us (3057.4 ops/sec)
(These were taken on a VM, so the measurements are extremely noisy, but
this sort of improvement is visible regardless.)
Alas, we do need a little extra bit of fiddling because division does
not work (crbug.com/787617).
Bug: chromium:787617
Update-Note: This removes the MSan uint128_t workaround which does not
appear to be necessary anymore.
Change-Id: I8361314608521e5bdaf0e7eeae7a02c33f55c69f
Reviewed-on: https://boringssl-review.googlesource.com/23984
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The fiat-crypto-generated code uses the Montgomery form implementation
strategy, for both 32-bit and 64-bit code.
64-bit throughput seems slower, but the difference is smaller than noise between repetitions (-2%?)
32-bit throughput has decreased significantly for ECDH (-40%). I am
attributing this to the change from varibale-time scalar multiplication
to constant-time scalar multiplication. Due to the same bottleneck,
ECDSA verification still uses the old code (otherwise there would have
been a 60% throughput decrease). On the other hand, ECDSA signing
throughput has increased slightly (+10%), perhaps due to the use of a
precomputed table of multiples of the base point.
64-bit benchmarks (Google Cloud Haswell):
with this change:
Did 9126 ECDH P-256 operations in 1009572us (9039.5 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039832us (22119.0 ops/sec)
Did 8820 ECDSA P-256 verify operations in 1024242us (8611.2 ops/sec)
master (40e8c921ca):
Did 9340 ECDH P-256 operations in 1017975us (9175.1 ops/sec)
Did 23000 ECDSA P-256 signing operations in 1039820us (22119.2 ops/sec)
Did 8688 ECDSA P-256 verify operations in 1021108us (8508.4 ops/sec)
benchmarks on ARMv7 (LG Nexus 4):
with this change:
Did 150 ECDH P-256 operations in 1029726us (145.7 ops/sec)
Did 506 ECDSA P-256 signing operations in 1065192us (475.0 ops/sec)
Did 363 ECDSA P-256 verify operations in 1033298us (351.3 ops/sec)
master (2fce1beda0):
Did 245 ECDH P-256 operations in 1017518us (240.8 ops/sec)
Did 473 ECDSA P-256 signing operations in 1086281us (435.4 ops/sec)
Did 360 ECDSA P-256 verify operations in 1003846us (358.6 ops/sec)
64-bit tables converted as follows:
import re, sys, math
p = 2**256 - 2**224 + 2**192 + 2**96 - 1
R = 2**256
def convert(t):
x0, s1, x1, s2, x2, s3, x3 = t.groups()
v = int(x0, 0) + 2**64 * (int(x1, 0) + 2**64*(int(x2,0) + 2**64*(int(x3, 0)) ))
w = v*R%p
y0 = hex(w%(2**64))
y1 = hex((w>>64)%(2**64))
y2 = hex((w>>(2*64))%(2**64))
y3 = hex((w>>(3*64))%(2**64))
ww = int(y0, 0) + 2**64 * (int(y1, 0) + 2**64*(int(y2,0) + 2**64*(int(y3, 0)) ))
if ww != v*R%p:
print(x0,x1,x2,x3)
print(hex(v))
print(y0,y1,y2,y3)
print(hex(w))
print(hex(ww))
assert 0
return '{'+y0+s1+y1+s2+y2+s3+y3+'}'
fe_re = re.compile('{'+r'(\s*,\s*)'.join(r'(\d+|0x[abcdefABCDEF0123456789]+)' for i in range(4)) + '}')
print (re.sub(fe_re, convert, sys.stdin.read()).rstrip('\n'))
32-bit tables converted from 64-bit tables
Change-Id: I52d6e5504fcb6ca2e8b0ee13727f4500c80c1799
Reviewed-on: https://boringssl-review.googlesource.com/23244
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Along the way, this allows us to tidy up the invariants associated with
EC_SCALAR. They were fuzzy around ec_point_mul_scalar and some
computations starting from the digest in ECDSA. The latter I've put into
the type system with EC_LOOSE_SCALAR.
As for the former, Andres points out that particular EC implementations
are only good for scalars within a certain range, otherwise you may need
extra work to avoid the doubling case. To simplify curve
implementations, we reduce them fully rather than do the looser bit size
check, so they can have the stronger precondition to work with.
Change-Id: Iff9a0404f89adf8f7f914f8e8246c9f3136453f1
Reviewed-on: https://boringssl-review.googlesource.com/23664
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
We check that the private key is less than the order, but we forgot the
other end.
Update-Note: It's possible some caller was relying on this, but since
that function already checked the other half of the range, I'm
expecting this to be a no-op change.
Change-Id: I4a53357d7737735b3cfbe97d379c8ca4eca5d5ac
Reviewed-on: https://boringssl-review.googlesource.com/23665
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
Rejecting values where we'd previous called BN_nnmod may have been
overly ambitious. In the long run, all the supported ECC APIs (ECDSA*,
ECDH_compute_key, and probably some additional new ECDH API) will be
using the EC_SCALAR version anyway, so this doesn't really matter.
Change-Id: I79cd4015f2d6daf213e4413caa2a497608976f93
Reviewed-on: https://boringssl-review.googlesource.com/23584
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Hasse's theorem implies at most one subtraction is necessary. This is
still using BIGNUM for now because field elements
(EC_POINT_get_affine_coordinates_GFp) are BIGNUMs.
This gives an additional 2% speedup for signing.
Before:
Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec)
Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec)
Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec)
After:
Did 16000 ECDSA P-224 signing operations in 1054918us (15167.1 ops/sec)
Did 20000 ECDSA P-256 signing operations in 1037338us (19280.1 ops/sec)
Did 1045 ECDSA P-384 signing operations in 1049073us (996.1 ops/sec)
Did 484 ECDSA P-521 signing operations in 1085492us (445.9 ops/sec)
Change-Id: I2bfe214f968eca7a8e317928c0f3daf1a14bca90
Reviewed-on: https://boringssl-review.googlesource.com/23076
Reviewed-by: Adam Langley <agl@google.com>
None of the asymmetric crypto we inherented from OpenSSL is
constant-time because of BIGNUM. BIGNUM chops leading zeros off the
front of everything, so we end up leaking information about the first
word, in theory. BIGNUM functions additionally tend to take the full
range of inputs and then call into BN_nnmod at various points.
All our secret values should be acted on in constant-time, but k in
ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an
attempt to mitigate the BIGNUM leaks, would add a couple copies of the
order.
This does not work at all. k is used to compute two values: k^-1 and kG.
The first operation when computing k^-1 is to call BN_nnmod if k is out
of range. The entry point to our tuned constant-time curve
implementations is to call BN_nnmod if the scalar has too many bits,
which this causes. The result is both corrections are immediately undone
but cause us to do more variable-time work in the meantime.
Replace all these computations around k with the word-based functions
added in the various preceding CLs. In doing so, replace the BN_mod_mul
calls (which internally call BN_nnmod) with Montgomery reduction. We can
avoid taking k^-1 out of Montgomery form, which combines nicely with
Brian Smith's trick in 3426d10119. Along
the way, we avoid some unnecessary mallocs.
BIGNUM still affects the private key itself, as well as the EC_POINTs.
But this should hopefully be much better now. Also it's 10% faster:
Before:
Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec)
Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec)
Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec)
After:
Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec)
Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec)
Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec)
Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1
Reviewed-on: https://boringssl-review.googlesource.com/23075
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: Id12ab478b6ba441fb1b6f4c2f9479384fc3fbdb6
Reviewed-on: https://boringssl-review.googlesource.com/23144
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
|EC_POINT_mul| is almost exclusively used with reduced scalars, with
this exception. This comes from consumers following NIST SP 800-56A
section 5.6.2.3.2. (Though all our curves have cofactor one, so this
check isn't useful.)
Add a test for this so we don't accidentally break it.
Change-Id: I42492db38a1ea03acec4febdd7945c8a3933530a
Reviewed-on: https://boringssl-review.googlesource.com/23084
Reviewed-by: Adam Langley <agl@google.com>
I still need to revive the original CL, but right now I'm interested in
giving every EC_GROUP an order_mont and having different ownership of
that field between built-in and custom groups is kind of a nuisance. If
I'm going to do that anyway, better to avoid computing the entire
EC_GROUP in one go.
I'm using some manual locking rather than CRYPTO_once here so that it
behaves well in the face of malloc errors. Not that we especially care,
but it was easy to do.
This speeds up our ECDH benchmark a bit which otherwise must construct the
EC_GROUP each time (matching real world usage).
Before:
Did 7619 ECDH P-224 operations in 1003190us (7594.8 ops/sec)
Did 7518 ECDH P-256 operations in 1060844us (7086.8 ops/sec)
Did 572 ECDH P-384 operations in 1055878us (541.7 ops/sec)
Did 264 ECDH P-521 operations in 1062375us (248.5 ops/sec)
After:
Did 8415 ECDH P-224 operations in 1066695us (7888.9 ops/sec)
Did 7952 ECDH P-256 operations in 1022819us (7774.6 ops/sec)
Did 572 ECDH P-384 operations in 1055817us (541.8 ops/sec)
Did 264 ECDH P-521 operations in 1060008us (249.1 ops/sec)
Bug: 20
Change-Id: I7446cd0a69a840551dcc2dfabadde8ee1e3ff3e2
Reviewed-on: https://boringssl-review.googlesource.com/23073
Reviewed-by: Adam Langley <agl@google.com>
Later code will take advantage of these invariants. Enforcing them on
custom curves avoids making them go through a custom codepath.
Change-Id: I23cee72a90c2e4846b41e03e6be26bc3abeb4a45
Reviewed-on: https://boringssl-review.googlesource.com/23072
Reviewed-by: Adam Langley <agl@google.com>
Currently we only check that the underlying EC_METHODs match, which
avoids the points being in different forms, but not that the points are
on the same curves. (We fixed the APIs early on so off-curve EC_POINTs
cannot be created.)
In particular, this comes up with folks implementating Java's crypto
APIs with ECDH_compute_key. These APIs are both unfortunate and should
not be mimicked, as they allow folks to mismatch the groups on the two
multiple EC_POINTs. Instead, ECDH APIs should take the public value as a
byte string.
Thanks also to Java's poor crypto APIs, we must support custom curves,
which makes this particularly gnarly. This CL makes EC_GROUP_cmp work
with custom curves and adds an additional subtle requirement to
EC_GROUP_set_generator.
Annoyingly, this change is additionally subtle because we now have a
reference cycle to hack around.
Change-Id: I2efbc4bd5cb65fee5f66527bd6ccad6b9d5120b9
Reviewed-on: https://boringssl-review.googlesource.com/22245
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
I really need to resurrect the CL to make them entirely static
(https://crbug.com/boringssl/20), but, in the meantime, to make
replacing the EC_METHOD pointer in EC_POINT with EC_GROUP not
*completely* insane, make them refcounted.
OpenSSL did not do this because their EC_GROUPs are mutable
(EC_GROUP_set_asn1_flag and EC_GROUP_set_point_conversion_form). Ours
are immutable but for the two-function dance around custom curves (more
of OpenSSL's habit of making their objects too complex), which is good
enough to refcount.
Change-Id: I3650993737a97da0ddcf0e5fb7a15876e724cadc
Reviewed-on: https://boringssl-review.googlesource.com/22244
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This reverts commit f6942f0d22.
Reason for revert: This doesn't actually work in clang-cl. I
forgot we didn't have the clang-cl try bots enabled! :-( I
believe __asm__ is still okay, but I'll try it by hand
tomorrow.
Original change's description:
> Use uint128_t and __asm__ in clang-cl.
>
> clang-cl does not define __GNUC__ but is still a functioning clang. We
> should be able to use our uint128_t and __asm__ code in it on Windows.
>
> Change-Id: I67310ee68baa0c0c947b2441c265b019ef12af7e
> Reviewed-on: https://boringssl-review.googlesource.com/22184
> Commit-Queue: Adam Langley <agl@google.com>
> Reviewed-by: Adam Langley <agl@google.com>
> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
TBR=agl@google.com,davidben@google.com
Change-Id: I5c7e0391cd9c2e8cc0dfde37e174edaf5d17db22
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://boringssl-review.googlesource.com/22224
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
clang-cl does not define __GNUC__ but is still a functioning clang. We
should be able to use our uint128_t and __asm__ code in it on Windows.
Change-Id: I67310ee68baa0c0c947b2441c265b019ef12af7e
Reviewed-on: https://boringssl-review.googlesource.com/22184
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
crypto/{asn1,x509,x509v3,pem} were skipped as they are still OpenSSL
style.
Change-Id: I3cd9a60e1cb483a981aca325041f3fbce294247c
Reviewed-on: https://boringssl-review.googlesource.com/19504
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It's confusing to have both mont and mont_data on EC_GROUP. The
documentation was also wrong.
Change-Id: I4e2e3169ed79307018212fba51d015bbbe5c4227
Reviewed-on: https://boringssl-review.googlesource.com/10348
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Using ADX instructions requires relatively new assemblers. Conscrypt are
currently using Yasm 1.2.0. Revert these for the time being to unbreak
their build.
Change-Id: Iaba5761ccedcafaffb5ca79a8eaf7fa565583c32
Reviewed-on: https://boringssl-review.googlesource.com/19244
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
We can test these with Intel SDE now. The AVX2 code just affects the two
select functions while the ADX code is a separate implementation.
Haswell numbers:
Before:
Did 84630 ECDH P-256 operations in 10031494us (8436.4 ops/sec)
Did 206000 ECDSA P-256 signing operations in 10015055us (20569.0 ops/sec)
Did 77256 ECDSA P-256 verify operations in 10064556us (7676.0 ops/sec)
After:
Did 86112 ECDH P-256 operations in 10015008us (8598.3 ops/sec)
Did 211000 ECDSA P-256 signing operations in 10025104us (21047.2 ops/sec)
Did 79344 ECDSA P-256 verify operations in 10017076us (7920.9 ops/sec)
Skylake numbers:
Before:
Did 75684 ECDH P-256 operations in 10016019us (7556.3 ops/sec)
Did 185000 ECDSA P-256 signing operations in 10012090us (18477.7 ops/sec)
Did 72885 ECDSA P-256 verify operations in 10027154us (7268.8 ops/sec)
After:
Did 89598 ECDH P-256 operations in 10032162us (8931.1 ops/sec)
Did 203000 ECDSA P-256 signing operations in 10019739us (20260.0 ops/sec)
Did 87040 ECDSA P-256 verify operations in 10000441us (8703.6 ops/sec)
The code was slightly patched for delocate.go compatibility.
Change-Id: Ic44ced4eca65c656bbe07d5a7fee91ec6925eb59
Reviewed-on: https://boringssl-review.googlesource.com/18967
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
The AVX2 code has alignment requirements.
Change-Id: Ieb0774f7595a76eef0f3a15aabd63d056bbaa463
Reviewed-on: https://boringssl-review.googlesource.com/18966
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This isn't all of our pointer games by far, but for any code which
doesn't run on armv6, memcpy and pointer cast compile to the same code.
For code with does care about armv6 (do we care?), it'll need a bit more
work. armv6 makes memcpy into a function call.
Ironically, the one platform where C needs its alignment rules is the
one platform that makes it hard to honor C's alignment rules.
Change-Id: Ib9775aa4d9df9381995df8698bd11eb260aac58c
Reviewed-on: https://boringssl-review.googlesource.com/17707
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This is the last of the non-GTest tests. We never did end up writing
example files or doc.go tooling for them. And probably examples should
be in C++ at this point.
Bug: 129
Change-Id: Icbc43c9639cfed7423df20df1cdcb8c35f23fc1a
Reviewed-on: https://boringssl-review.googlesource.com/17669
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Change-Id: I8512c6bfb62f1a83afc8f763d681bf5db3b4ceae
Reviewed-on: https://boringssl-review.googlesource.com/17144
Commit-Queue: Adam Langley <alangley@gmail.com>
Reviewed-by: David Benjamin <davidben@google.com>
Drop some redundant instructions in reduction in ecp_nistz256_sqr_montx.
(Imported from upstream's 8fc063dcc9668589fd95533d25932396d60987f9.)
I believe this is a no-op for us as we do not currently enable the
ADX-based optimizations.
Change-Id: I34a5f5ffb965d59c67f6b9f0ca7937e49ba6e820
Reviewed-on: https://boringssl-review.googlesource.com/16884
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The only place it is used is EC_KEY_{dup,copy} and no one calls that
function on an EC_KEY with ex_data. This aligns with functions like
RSAPublicKey_dup which do not copy ex_data. The logic is also somewhat
subtle in the face of malloc errors (upstream's PR 3323).
In fact, we'd even changed the function pointer signature from upstream,
so BoringSSL-only code is needed to pass this pointer in anyway. (I
haven't switched it to CRYPTO_EX_unused because there are some callers
which pass in an implementation anyway.)
Note, in upstream, the dup hook is also used for SSL_SESSIONs when those
are duplicated (for TLS 1.2 ticket renewal or TLS 1.3 resumption). Our
interpretation is that callers should treat those SSL_SESSIONs
equivalently to newly-established ones. This avoids every consumer
providing a dup hook and simplifies the interface.
(I've gone ahead and removed the TODO(fork). I don't think we'll be able
to change this API. Maybe introduce a new one, but it may not be worth
it? Then again, this API is atrocious... I've never seen anyone use argl
and argp even.)
BUG=21
Change-Id: I6c9e9d5a02347cb229d4c084c1e85125bd741d2b
Reviewed-on: https://boringssl-review.googlesource.com/16344
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This avoids depending the FIPS module on crypto/bytestring and moves
ECDSA_SIG_{new,free} into the module.
Change-Id: I7b45ef07f1140873a0da300501141b6ae272a5d9
Reviewed-on: https://boringssl-review.googlesource.com/15984
Reviewed-by: Adam Langley <agl@google.com>
The names in the P-224 code collided with the P-256 code and thus many
of the functions and constants in the P-224 code have been prefixed.
Change-Id: I6bcd304640c539d0483d129d5eaf1702894929a8
Reviewed-on: https://boringssl-review.googlesource.com/15847
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>