Commit Graph

6 Commits

Author SHA1 Message Date
David Benjamin
61f1085ee9 Switch crypto/bn back to _umul128 on Windows clang.
Upstream (impressively quickly) fixed the missing intrinsic. Switch Windows
clang back to building the same code as MSVC. Also include the intrin.h header
rather than forward-declare the intrinsic. clang only works if the header is
explicitly included. Chromium forcibly includes it to work around these kinds
of issues, but we shouldn't rely on it.

BUG=crbug.com/438382

Change-Id: I0ff6d48e1a3aa455cff99f8dc4c407e88b84d446
Reviewed-on: https://boringssl-review.googlesource.com/2461
Reviewed-by: Adam Langley <agl@google.com>
2014-12-04 00:23:15 +00:00
David Benjamin
af9d9419a6 Don't use _umul128 for Windows clang.
Windows clang lacks _umul128, but it has inline assembly so just use
that.

Change-Id: I6ff5d2465edc703a4d47ef0efbcea43d6fcc79fa
Reviewed-on: https://boringssl-review.googlesource.com/2454
Reviewed-by: Adam Langley <agl@google.com>
2014-12-02 20:28:25 +00:00
David Benjamin
029a779204 Remove BN_LONG macro.
It's never used, upstream or downstream. The 64-bit value is wrong anyway for
LLP64 platforms.

Change-Id: I56afc51f4c17ed3f1c30959b574034f181b5b0c7
Reviewed-on: https://boringssl-review.googlesource.com/2123
Reviewed-by: Adam Langley <agl@google.com>
2014-11-04 00:27:40 +00:00
Adam Langley
b8b5478248 Expose two, rather internal, BIGNUM functions.
Android uses these for some conversions from Java formats. The code is
sufficiently bespoke that putting the conversion functions into
BoringSSL doesn't make a lot of sense, but the alternative is to expose
these ones.

Change-Id: If1362bc4a5c44cba4023c909e2ba6488ae019ddb
2014-08-14 09:42:45 -07:00
Adam Langley
30eda1d2b8 Include some build fixes for OS X.
Apart from the obvious little issues, this also works around a
(seeming) libtool/linker:

a.c defines a symbol:

int kFoo;

b.c uses it:

extern int kFoo;

int f() {
  return kFoo;
}

compile them:

$ gcc -c a.c
$ gcc -c b.c

and create a dummy main in order to run it, main.c:

int f();

int main() {
  return f();
}

this works as expected:

$ gcc main.c a.o b.o

but, if we make an archive:

$ ar q lib.a a.o b.o

and use that:

$ gcc main.c lib.a
Undefined symbols for architecture x86_64
  "_kFoo", referenced from:
    _f in lib.a(b.o)

(It doesn't matter what order the .o files are put into the .a)

Linux and Windows don't seem to have this problem.

nm on a.o shows that the symbol is of type "C", which is a "common symbol"[1].
Basically the linker will merge multiple common symbol definitions together.

If ones makes a.c read:

int kFoo = 0;

Then one gets a type "D" symbol - a "data section symbol" and everything works
just fine.

This might actually be a libtool bug instead of an ld bug: Looking at `xxd
lib.a | less`, the __.SYMDEF SORTED index at the beginning of the archive
doesn't contain an entry for kFoo unless initialised.

Change-Id: I4cdad9ba46e9919221c3cbd79637508959359427
2014-06-24 11:15:12 -07:00
Adam Langley
95c29f3cd1 Inital import.
Initial fork from f2d678e6e89b6508147086610e985d4e8416e867 (1.0.2 beta).

(This change contains substantial changes from the original and
effectively starts a new history.)
2014-06-20 13:17:32 -07:00