/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib")) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../crypto/internal.h" #include "../internal.h" #include "async_bio.h" #include "handshake_util.h" #include "packeted_bio.h" #include "settings_writer.h" #include "test_config.h" #include "test_state.h" #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static void PrintSocketError(const char *func) { perror(func); } #else static void PrintSocketError(const char *func) { fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); } #endif static int Usage(const char *program) { fprintf(stderr, "Usage: %s [flags...]\n", program); return 1; } template struct Free { void operator()(T *buf) { free(buf); } }; // Connect returns a new socket connected to localhost on |port| or -1 on // error. static int Connect(uint16_t port) { for (int af : { AF_INET6, AF_INET }) { int sock = socket(af, SOCK_STREAM, 0); if (sock == -1) { PrintSocketError("socket"); return -1; } int nodelay = 1; if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&nodelay), sizeof(nodelay)) != 0) { PrintSocketError("setsockopt"); closesocket(sock); return -1; } sockaddr_storage ss; OPENSSL_memset(&ss, 0, sizeof(ss)); ss.ss_family = af; socklen_t len = 0; if (af == AF_INET6) { sockaddr_in6 *sin6 = (sockaddr_in6 *) &ss; len = sizeof(*sin6); sin6->sin6_port = htons(port); if (!inet_pton(AF_INET6, "::1", &sin6->sin6_addr)) { PrintSocketError("inet_pton"); closesocket(sock); return -1; } } else if (af == AF_INET) { sockaddr_in *sin = (sockaddr_in *) &ss; len = sizeof(*sin); sin->sin_port = htons(port); if (!inet_pton(AF_INET, "127.0.0.1", &sin->sin_addr)) { PrintSocketError("inet_pton"); closesocket(sock); return -1; } } if (connect(sock, reinterpret_cast(&ss), len) == 0) { return sock; } closesocket(sock); } PrintSocketError("connect"); return -1; } class SocketCloser { public: explicit SocketCloser(int sock) : sock_(sock) {} ~SocketCloser() { // Half-close and drain the socket before releasing it. This seems to be // necessary for graceful shutdown on Windows. It will also avoid write // failures in the test runner. #if defined(OPENSSL_WINDOWS) shutdown(sock_, SD_SEND); #else shutdown(sock_, SHUT_WR); #endif while (true) { char buf[1024]; if (recv(sock_, buf, sizeof(buf), 0) <= 0) { break; } } closesocket(sock_); } private: const int sock_; }; // DoRead reads from |ssl|, resolving any asynchronous operations. It returns // the result value of the final |SSL_read| call. static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { const TestConfig *config = GetTestConfig(ssl); TestState *test_state = GetTestState(ssl); int ret; do { if (config->async) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. |SSL_read| may // trigger a retransmit, so disconnect the write quota. AsyncBioEnforceWriteQuota(test_state->async_bio, false); } ret = CheckIdempotentError("SSL_peek/SSL_read", ssl, [&]() -> int { return config->peek_then_read ? SSL_peek(ssl, out, max_out) : SSL_read(ssl, out, max_out); }); if (config->async) { AsyncBioEnforceWriteQuota(test_state->async_bio, true); } // Run the exporter after each read. This is to test that the exporter fails // during a renegotiation. if (config->use_exporter_between_reads) { uint8_t buf; if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) { fprintf(stderr, "failed to export keying material\n"); return -1; } } } while (config->async && RetryAsync(ssl, ret)); if (config->peek_then_read && ret > 0) { std::unique_ptr buf(new uint8_t[static_cast(ret)]); // SSL_peek should synchronously return the same data. int ret2 = SSL_peek(ssl, buf.get(), ret); if (ret2 != ret || OPENSSL_memcmp(buf.get(), out, ret) != 0) { fprintf(stderr, "First and second SSL_peek did not match.\n"); return -1; } // SSL_read should synchronously return the same data and consume it. ret2 = SSL_read(ssl, buf.get(), ret); if (ret2 != ret || OPENSSL_memcmp(buf.get(), out, ret) != 0) { fprintf(stderr, "SSL_peek and SSL_read did not match.\n"); return -1; } } return ret; } // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous // operations. It returns the result of the final |SSL_write| call. static int WriteAll(SSL *ssl, const void *in_, size_t in_len) { const uint8_t *in = reinterpret_cast(in_); const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_write(ssl, in, in_len); if (ret > 0) { in += ret; in_len -= ret; } } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); return ret; } // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It // returns the result of the final |SSL_shutdown| call. static int DoShutdown(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_shutdown(ssl); } while (config->async && RetryAsync(ssl, ret)); return ret; } // DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous // operations. It returns the result of the final |SSL_send_fatal_alert| call. static int DoSendFatalAlert(SSL *ssl, uint8_t alert) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_send_fatal_alert(ssl, alert); } while (config->async && RetryAsync(ssl, ret)); return ret; } static uint16_t GetProtocolVersion(const SSL *ssl) { uint16_t version = SSL_version(ssl); if (!SSL_is_dtls(ssl)) { return version; } return 0x0201 + ~version; } // CheckAuthProperties checks, after the initial handshake is completed or // after a renegotiation, that authentication-related properties match |config|. static bool CheckAuthProperties(SSL *ssl, bool is_resume, const TestConfig *config) { if (!config->expected_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (config->expected_ocsp_response.size() != len || OPENSSL_memcmp(config->expected_ocsp_response.data(), data, len) != 0) { fprintf(stderr, "OCSP response mismatch\n"); return false; } } if (!config->expected_signed_cert_timestamps.empty()) { const uint8_t *data; size_t len; SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); if (config->expected_signed_cert_timestamps.size() != len || OPENSSL_memcmp(config->expected_signed_cert_timestamps.data(), data, len) != 0) { fprintf(stderr, "SCT list mismatch\n"); return false; } } if (config->expect_verify_result) { int expected_verify_result = config->verify_fail ? X509_V_ERR_APPLICATION_VERIFICATION : X509_V_OK; if (SSL_get_verify_result(ssl) != expected_verify_result) { fprintf(stderr, "Wrong certificate verification result\n"); return false; } } if (!config->expect_peer_cert_file.empty()) { bssl::UniquePtr expect_leaf; bssl::UniquePtr expect_chain; if (!LoadCertificate(&expect_leaf, &expect_chain, config->expect_peer_cert_file)) { return false; } // For historical reasons, clients report a chain with a leaf and servers // without. if (!config->is_server) { if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) { return false; } X509_up_ref(expect_leaf.get()); // sk_X509_insert takes ownership. } bssl::UniquePtr leaf(SSL_get_peer_certificate(ssl)); STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl); if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) { fprintf(stderr, "Received a different leaf certificate than expected.\n"); return false; } if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) { fprintf(stderr, "Received a chain of length %zu instead of %zu.\n", sk_X509_num(chain), sk_X509_num(expect_chain.get())); return false; } for (size_t i = 0; i < sk_X509_num(chain); i++) { if (X509_cmp(sk_X509_value(chain, i), sk_X509_value(expect_chain.get(), i)) != 0) { fprintf(stderr, "Chain certificate %zu did not match.\n", i + 1); return false; } } } if (!!SSL_SESSION_has_peer_sha256(SSL_get_session(ssl)) != config->expect_sha256_client_cert) { fprintf(stderr, "Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n", config->expect_sha256_client_cert, is_resume); return false; } if (config->expect_sha256_client_cert && SSL_SESSION_get0_peer_certificates(SSL_get_session(ssl)) != nullptr) { fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n", is_resume); return false; } const uint8_t *peer_sha256; size_t peer_sha256_len; SSL_SESSION_get0_peer_sha256(SSL_get_session(ssl), &peer_sha256, &peer_sha256_len); if (SSL_SESSION_has_peer_sha256(SSL_get_session(ssl))) { if (peer_sha256_len != 32) { fprintf(stderr, "Peer SHA-256 hash had length %zu instead of 32\n", peer_sha256_len); return false; } } else { if (peer_sha256_len != 0) { fprintf(stderr, "Unexpected peer SHA-256 hash of length %zu\n", peer_sha256_len); return false; } } return true; } // CheckHandshakeProperties checks, immediately after |ssl| completes its // initial handshake (or False Starts), whether all the properties are // consistent with the test configuration and invariants. static bool CheckHandshakeProperties(SSL *ssl, bool is_resume, const TestConfig *config) { if (!CheckAuthProperties(ssl, is_resume, config)) { return false; } if (SSL_get_current_cipher(ssl) == nullptr) { fprintf(stderr, "null cipher after handshake\n"); return false; } if (config->expect_version != 0 && SSL_version(ssl) != config->expect_version) { fprintf(stderr, "want version %04x, got %04x\n", config->expect_version, SSL_version(ssl)); return false; } bool expect_resume = is_resume && (!config->expect_session_miss || SSL_in_early_data(ssl)); if (!!SSL_session_reused(ssl) != expect_resume) { fprintf(stderr, "session unexpectedly was%s reused\n", SSL_session_reused(ssl) ? "" : " not"); return false; } bool expect_handshake_done = (is_resume || !config->false_start) && !SSL_in_early_data(ssl); if (expect_handshake_done != GetTestState(ssl)->handshake_done) { fprintf(stderr, "handshake was%s completed\n", GetTestState(ssl)->handshake_done ? "" : " not"); return false; } if (expect_handshake_done && !config->is_server) { bool expect_new_session = !config->expect_no_session && (!SSL_session_reused(ssl) || config->expect_ticket_renewal) && // Session tickets are sent post-handshake in TLS 1.3. GetProtocolVersion(ssl) < TLS1_3_VERSION; if (expect_new_session != GetTestState(ssl)->got_new_session) { fprintf(stderr, "new session was%s cached, but we expected the opposite\n", GetTestState(ssl)->got_new_session ? "" : " not"); return false; } } if (!is_resume) { if (config->expect_session_id && !GetTestState(ssl)->got_new_session) { fprintf(stderr, "session was not cached on the server.\n"); return false; } if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) { fprintf(stderr, "session was unexpectedly cached on the server.\n"); return false; } } // early_callback_called is updated in the handshaker, so we don't see it // here. if (!config->handoff && config->is_server && !GetTestState(ssl)->early_callback_called) { fprintf(stderr, "early callback not called\n"); return false; } if (!config->expected_server_name.empty()) { const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name == nullptr || server_name != config->expected_server_name) { fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, config->expected_server_name.c_str()); return false; } } if (!config->expected_next_proto.empty()) { const uint8_t *next_proto; unsigned next_proto_len; SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); if (next_proto_len != config->expected_next_proto.size() || OPENSSL_memcmp(next_proto, config->expected_next_proto.data(), next_proto_len) != 0) { fprintf(stderr, "negotiated next proto mismatch\n"); return false; } } if (!config->is_server) { const uint8_t *alpn_proto; unsigned alpn_proto_len; SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); if (alpn_proto_len != config->expected_alpn.size() || OPENSSL_memcmp(alpn_proto, config->expected_alpn.data(), alpn_proto_len) != 0) { fprintf(stderr, "negotiated alpn proto mismatch\n"); return false; } } if (!config->expected_quic_transport_params.empty()) { const uint8_t *peer_params; size_t peer_params_len; SSL_get_peer_quic_transport_params(ssl, &peer_params, &peer_params_len); if (peer_params_len != config->expected_quic_transport_params.size() || OPENSSL_memcmp(peer_params, config->expected_quic_transport_params.data(), peer_params_len) != 0) { fprintf(stderr, "QUIC transport params mismatch\n"); return false; } } if (!config->expected_channel_id.empty()) { uint8_t channel_id[64]; if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { fprintf(stderr, "no channel id negotiated\n"); return false; } if (config->expected_channel_id.size() != 64 || OPENSSL_memcmp(config->expected_channel_id.data(), channel_id, 64) != 0) { fprintf(stderr, "channel id mismatch\n"); return false; } } if (config->expected_token_binding_param != -1) { if (!SSL_is_token_binding_negotiated(ssl)) { fprintf(stderr, "no Token Binding negotiated\n"); return false; } if (SSL_get_negotiated_token_binding_param(ssl) != static_cast(config->expected_token_binding_param)) { fprintf(stderr, "Token Binding param mismatch\n"); return false; } } if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) { fprintf(stderr, "No EMS for connection when expected\n"); return false; } if (config->expect_secure_renegotiation && !SSL_get_secure_renegotiation_support(ssl)) { fprintf(stderr, "No secure renegotiation for connection when expected\n"); return false; } if (config->expect_no_secure_renegotiation && SSL_get_secure_renegotiation_support(ssl)) { fprintf(stderr, "Secure renegotiation unexpectedly negotiated for connection\n"); return false; } if (config->expect_peer_signature_algorithm != 0 && config->expect_peer_signature_algorithm != SSL_get_peer_signature_algorithm(ssl)) { fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n", SSL_get_peer_signature_algorithm(ssl), config->expect_peer_signature_algorithm); return false; } if (config->expect_curve_id != 0) { uint16_t curve_id = SSL_get_curve_id(ssl); if (static_cast(config->expect_curve_id) != curve_id) { fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id, static_cast(config->expect_curve_id)); return false; } } uint16_t cipher_id = static_cast(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl))); if (config->expect_cipher_aes != 0 && EVP_has_aes_hardware() && static_cast(config->expect_cipher_aes) != cipher_id) { fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n", cipher_id, static_cast(config->expect_cipher_aes)); return false; } if (config->expect_cipher_no_aes != 0 && !EVP_has_aes_hardware() && static_cast(config->expect_cipher_no_aes) != cipher_id) { fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n", cipher_id, static_cast(config->expect_cipher_no_aes)); return false; } if (is_resume && !SSL_in_early_data(ssl)) { if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) || (config->expect_reject_early_data && SSL_early_data_accepted(ssl))) { fprintf(stderr, "Early data was%s accepted, but we expected the opposite\n", SSL_early_data_accepted(ssl) ? "" : " not"); return false; } } if (!config->psk.empty()) { if (SSL_get_peer_cert_chain(ssl) != nullptr) { fprintf(stderr, "Received peer certificate on a PSK cipher.\n"); return false; } } else if (!config->is_server || config->require_any_client_certificate) { if (SSL_get_peer_cert_chain(ssl) == nullptr) { fprintf(stderr, "Received no peer certificate but expected one.\n"); return false; } } if (is_resume && config->expect_ticket_age_skew != 0 && SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) { fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n", SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew); return false; } if (config->expect_draft_downgrade != !!SSL_is_draft_downgrade(ssl)) { fprintf(stderr, "Got %sdraft downgrade signal, but wanted the opposite.\n", SSL_is_draft_downgrade(ssl) ? "" : "no "); return false; } const bool did_dummy_pq_padding = !!SSL_dummy_pq_padding_used(ssl); if (config->expect_dummy_pq_padding != did_dummy_pq_padding) { fprintf(stderr, "Dummy PQ padding %s observed, but expected the opposite.\n", did_dummy_pq_padding ? "was" : "was not"); return false; } return true; } static bool DoExchange(bssl::UniquePtr *out_session, bssl::UniquePtr *ssl_uniqueptr, const TestConfig *config, bool is_resume, bool is_retry, SettingsWriter *writer); // DoConnection tests an SSL connection against the peer. On success, it returns // true and sets |*out_session| to the negotiated SSL session. If the test is a // resumption attempt, |is_resume| is true and |session| is the session from the // previous exchange. static bool DoConnection(bssl::UniquePtr *out_session, SSL_CTX *ssl_ctx, const TestConfig *config, const TestConfig *retry_config, bool is_resume, SSL_SESSION *session, SettingsWriter *writer) { bssl::UniquePtr ssl = config->NewSSL( ssl_ctx, session, is_resume, std::unique_ptr(new TestState)); if (!ssl) { return false; } if (config->is_server) { SSL_set_accept_state(ssl.get()); } else { SSL_set_connect_state(ssl.get()); } int sock = Connect(config->port); if (sock == -1) { return false; } SocketCloser closer(sock); bssl::UniquePtr bio(BIO_new_socket(sock, BIO_NOCLOSE)); if (!bio) { return false; } if (config->is_dtls) { bssl::UniquePtr packeted = PacketedBioCreate(GetClock()); if (!packeted) { return false; } GetTestState(ssl.get())->packeted_bio = packeted.get(); BIO_push(packeted.get(), bio.release()); bio = std::move(packeted); } if (config->async) { bssl::UniquePtr async_scoped = config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); if (!async_scoped) { return false; } BIO_push(async_scoped.get(), bio.release()); GetTestState(ssl.get())->async_bio = async_scoped.get(); bio = std::move(async_scoped); } SSL_set_bio(ssl.get(), bio.get(), bio.get()); bio.release(); // SSL_set_bio takes ownership. bool ret = DoExchange(out_session, &ssl, config, is_resume, false, writer); if (!config->is_server && is_resume && config->expect_reject_early_data) { // We must have failed due to an early data rejection. if (ret) { fprintf(stderr, "0-RTT exchange unexpected succeeded.\n"); return false; } if (SSL_get_error(ssl.get(), -1) != SSL_ERROR_EARLY_DATA_REJECTED) { fprintf(stderr, "SSL_get_error did not signal SSL_ERROR_EARLY_DATA_REJECTED.\n"); return false; } // Before reseting, early state should still be available. if (!SSL_in_early_data(ssl.get()) || !CheckHandshakeProperties(ssl.get(), is_resume, config)) { fprintf(stderr, "SSL_in_early_data returned false before reset.\n"); return false; } // Reset the connection and try again at 1-RTT. SSL_reset_early_data_reject(ssl.get()); // After reseting, the socket should report it is no longer in an early data // state. if (SSL_in_early_data(ssl.get())) { fprintf(stderr, "SSL_in_early_data returned true after reset.\n"); return false; } if (!SetTestConfig(ssl.get(), retry_config)) { return false; } assert(!config->handoff); ret = DoExchange(out_session, &ssl, retry_config, is_resume, true, writer); } if (!ret) { return false; } if (!GetTestState(ssl.get())->msg_callback_ok) { return false; } if (!config->expect_msg_callback.empty() && GetTestState(ssl.get())->msg_callback_text != config->expect_msg_callback) { fprintf(stderr, "Bad message callback trace. Wanted:\n%s\nGot:\n%s\n", config->expect_msg_callback.c_str(), GetTestState(ssl.get())->msg_callback_text.c_str()); return false; } return true; } static bool DoExchange(bssl::UniquePtr *out_session, bssl::UniquePtr *ssl_uniqueptr, const TestConfig *config, bool is_resume, bool is_retry, SettingsWriter *writer) { int ret; SSL *ssl = ssl_uniqueptr->get(); SSL_CTX *session_ctx = SSL_get_SSL_CTX(ssl); if (!config->implicit_handshake) { if (config->handoff) { if (!DoSplitHandshake(ssl_uniqueptr, writer, is_resume)) { return false; } ssl = ssl_uniqueptr->get(); } do { ret = CheckIdempotentError("SSL_do_handshake", ssl, [&]() -> int { return SSL_do_handshake(ssl); }); } while (config->async && RetryAsync(ssl, ret)); if (config->forbid_renegotiation_after_handshake) { SSL_set_renegotiate_mode(ssl, ssl_renegotiate_never); } if (ret != 1 || !CheckHandshakeProperties(ssl, is_resume, config)) { return false; } CopySessions(session_ctx, SSL_get_SSL_CTX(ssl)); if (is_resume && !is_retry && !config->is_server && config->expect_no_offer_early_data && SSL_in_early_data(ssl)) { fprintf(stderr, "Client unexpectedly offered early data.\n"); return false; } if (config->handshake_twice) { do { ret = SSL_do_handshake(ssl); } while (config->async && RetryAsync(ssl, ret)); if (ret != 1) { return false; } } // Skip the |config->async| logic as this should be a no-op. if (config->no_op_extra_handshake && SSL_do_handshake(ssl) != 1) { fprintf(stderr, "Extra SSL_do_handshake was not a no-op.\n"); return false; } // Reset the state to assert later that the callback isn't called in // renegotations. GetTestState(ssl)->got_new_session = false; } if (config->export_early_keying_material > 0) { std::vector result( static_cast(config->export_early_keying_material)); if (!SSL_export_early_keying_material( ssl, result.data(), result.size(), config->export_label.data(), config->export_label.size(), reinterpret_cast(config->export_context.data()), config->export_context.size())) { fprintf(stderr, "failed to export keying material\n"); return false; } if (WriteAll(ssl, result.data(), result.size()) < 0) { return false; } } if (config->export_keying_material > 0) { std::vector result( static_cast(config->export_keying_material)); if (!SSL_export_keying_material( ssl, result.data(), result.size(), config->export_label.data(), config->export_label.size(), reinterpret_cast(config->export_context.data()), config->export_context.size(), config->use_export_context)) { fprintf(stderr, "failed to export keying material\n"); return false; } if (WriteAll(ssl, result.data(), result.size()) < 0) { return false; } } if (config->tls_unique) { uint8_t tls_unique[16]; size_t tls_unique_len; if (!SSL_get_tls_unique(ssl, tls_unique, &tls_unique_len, sizeof(tls_unique))) { fprintf(stderr, "failed to get tls-unique\n"); return false; } if (tls_unique_len != 12) { fprintf(stderr, "expected 12 bytes of tls-unique but got %u", static_cast(tls_unique_len)); return false; } if (WriteAll(ssl, tls_unique, tls_unique_len) < 0) { return false; } } if (config->send_alert) { if (DoSendFatalAlert(ssl, SSL_AD_DECOMPRESSION_FAILURE) < 0) { return false; } return true; } if (config->write_different_record_sizes) { if (config->is_dtls) { fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); return false; } // This mode writes a number of different record sizes in an attempt to // trip up the CBC record splitting code. static const size_t kBufLen = 32769; std::unique_ptr buf(new uint8_t[kBufLen]); OPENSSL_memset(buf.get(), 0x42, kBufLen); static const size_t kRecordSizes[] = { 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) { const size_t len = kRecordSizes[i]; if (len > kBufLen) { fprintf(stderr, "Bad kRecordSizes value.\n"); return false; } if (WriteAll(ssl, buf.get(), len) < 0) { return false; } } } else { static const char kInitialWrite[] = "hello"; bool pending_initial_write = false; if (config->read_with_unfinished_write) { if (!config->async) { fprintf(stderr, "-read-with-unfinished-write requires -async.\n"); return false; } // Let only one byte of the record through. AsyncBioAllowWrite(GetTestState(ssl)->async_bio, 1); int write_ret = SSL_write(ssl, kInitialWrite, strlen(kInitialWrite)); if (SSL_get_error(ssl, write_ret) != SSL_ERROR_WANT_WRITE) { fprintf(stderr, "Failed to leave unfinished write.\n"); return false; } pending_initial_write = true; } else if (config->shim_writes_first) { if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) { return false; } } if (!config->shim_shuts_down) { for (;;) { // Read only 512 bytes at a time in TLS to ensure records may be // returned in multiple reads. size_t read_size = config->is_dtls ? 16384 : 512; if (config->read_size > 0) { read_size = config->read_size; } std::unique_ptr buf(new uint8_t[read_size]); int n = DoRead(ssl, buf.get(), read_size); int err = SSL_get_error(ssl, n); if (err == SSL_ERROR_ZERO_RETURN || (n == 0 && err == SSL_ERROR_SYSCALL)) { if (n != 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } // Stop on either clean or unclean shutdown. break; } else if (err != SSL_ERROR_NONE) { if (n > 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } return false; } // Successfully read data. if (n <= 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } if (!config->is_server && is_resume && !is_retry && config->expect_reject_early_data) { fprintf(stderr, "Unexpectedly received data instead of 0-RTT reject.\n"); return false; } // After a successful read, with or without False Start, the handshake // must be complete unless we are doing early data. if (!GetTestState(ssl)->handshake_done && !SSL_early_data_accepted(ssl)) { fprintf(stderr, "handshake was not completed after SSL_read\n"); return false; } // Clear the initial write, if unfinished. if (pending_initial_write) { if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) { return false; } pending_initial_write = false; } for (int i = 0; i < n; i++) { buf[i] ^= 0xff; } if (WriteAll(ssl, buf.get(), n) < 0) { return false; } } } } if (!config->is_server && !config->false_start && !config->implicit_handshake && // Session tickets are sent post-handshake in TLS 1.3. GetProtocolVersion(ssl) < TLS1_3_VERSION && GetTestState(ssl)->got_new_session) { fprintf(stderr, "new session was established after the handshake\n"); return false; } if (GetProtocolVersion(ssl) >= TLS1_3_VERSION && !config->is_server) { bool expect_new_session = !config->expect_no_session && !config->shim_shuts_down; if (expect_new_session != GetTestState(ssl)->got_new_session) { fprintf(stderr, "new session was%s cached, but we expected the opposite\n", GetTestState(ssl)->got_new_session ? "" : " not"); return false; } if (expect_new_session) { bool got_early_data = GetTestState(ssl)->new_session->ticket_max_early_data != 0; if (config->expect_ticket_supports_early_data != got_early_data) { fprintf(stderr, "new session did%s support early data, but we expected the " "opposite\n", got_early_data ? "" : " not"); return false; } } } if (out_session) { *out_session = std::move(GetTestState(ssl)->new_session); } ret = DoShutdown(ssl); if (config->shim_shuts_down && config->check_close_notify) { // We initiate shutdown, so |SSL_shutdown| will return in two stages. First // it returns zero when our close_notify is sent, then one when the peer's // is received. if (ret != 0) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); return false; } ret = DoShutdown(ssl); } if (ret != 1) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); return false; } if (SSL_total_renegotiations(ssl) > 0) { if (!SSL_get_session(ssl)->not_resumable) { fprintf(stderr, "Renegotiations should never produce resumable sessions.\n"); return false; } if (SSL_session_reused(ssl)) { fprintf(stderr, "Renegotiations should never resume sessions.\n"); return false; } // Re-check authentication properties after a renegotiation. The reported // values should remain unchanged even if the server sent different SCT // lists. if (!CheckAuthProperties(ssl, is_resume, config)) { return false; } } if (SSL_total_renegotiations(ssl) != config->expect_total_renegotiations) { fprintf(stderr, "Expected %d renegotiations, got %d\n", config->expect_total_renegotiations, SSL_total_renegotiations(ssl)); return false; } return true; } class StderrDelimiter { public: ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); } }; int main(int argc, char **argv) { // To distinguish ASan's output from ours, add a trailing message to stderr. // Anything following this line will be considered an error. StderrDelimiter delimiter; #if defined(OPENSSL_WINDOWS) // Initialize Winsock. WORD wsa_version = MAKEWORD(2, 2); WSADATA wsa_data; int wsa_err = WSAStartup(wsa_version, &wsa_data); if (wsa_err != 0) { fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); return 1; } if (wsa_data.wVersion != wsa_version) { fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); return 1; } #else signal(SIGPIPE, SIG_IGN); #endif CRYPTO_library_init(); TestConfig initial_config, resume_config, retry_config; if (!ParseConfig(argc - 1, argv + 1, &initial_config, &resume_config, &retry_config)) { return Usage(argv[0]); } bssl::UniquePtr ssl_ctx; bssl::UniquePtr session; for (int i = 0; i < initial_config.resume_count + 1; i++) { bool is_resume = i > 0; TestConfig *config = is_resume ? &resume_config : &initial_config; ssl_ctx = config->SetupCtx(ssl_ctx.get()); if (!ssl_ctx) { ERR_print_errors_fp(stderr); return 1; } if (is_resume && !initial_config.is_server && !session) { fprintf(stderr, "No session to offer.\n"); return 1; } bssl::UniquePtr offer_session = std::move(session); SettingsWriter writer; if (!writer.Init(i, config, offer_session.get())) { fprintf(stderr, "Error writing settings.\n"); return 1; } bool ok = DoConnection(&session, ssl_ctx.get(), config, &retry_config, is_resume, offer_session.get(), &writer); if (!writer.Commit()) { fprintf(stderr, "Error writing settings.\n"); return 1; } if (!ok) { fprintf(stderr, "Connection %d failed.\n", i + 1); ERR_print_errors_fp(stderr); return 1; } if (config->resumption_delay != 0) { AdvanceClock(config->resumption_delay); } } return 0; }