/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include "internal.h" #include "../internal.h" /* It's assumed that the operating system always has an unfailing source of * entropy which is accessed via |CRYPTO_sysrand|. (If the operating system * entropy source fails, it's up to |CRYPTO_sysrand| to abort the process—we * don't try to handle it.) * * In addition, the hardware may provide a low-latency RNG. Intel's rdrand * instruction is the canonical example of this. When a hardware RNG is * available we don't need to worry about an RNG failure arising from fork()ing * the process or moving a VM, so we can keep thread-local RNG state and use it * as an additional-data input to CTR-DRBG. * * (We assume that the OS entropy is safe from fork()ing and VM duplication. * This might be a bit of a leap of faith, esp on Windows, but there's nothing * that we can do about it.) */ /* kReseedInterval is the number of generate calls made to CTR-DRBG before * reseeding. */ static const unsigned kReseedInterval = 4096; /* rand_thread_state contains the per-thread state for the RNG. */ struct rand_thread_state { CTR_DRBG_STATE drbg; /* calls is the number of generate calls made on |drbg| since it was last * (re)seeded. This is bound by |kReseedInterval|. */ unsigned calls; }; /* rand_thread_state_free frees a |rand_thread_state|. This is called when a * thread exits. */ static void rand_thread_state_free(void *state_in) { if (state_in == NULL) { return; } struct rand_thread_state *state = state_in; CTR_DRBG_clear(&state->drbg); OPENSSL_free(state); } #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) /* These functions are defined in asm/rdrand-x86_64.pl */ extern int CRYPTO_rdrand(uint8_t out[8]); extern int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len); static int have_rdrand(void) { return (OPENSSL_ia32cap_P[1] & (1u << 30)) != 0; } static int hwrand(uint8_t *buf, size_t len) { if (!have_rdrand()) { return 0; } const size_t len_multiple8 = len & ~7; if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { return 0; } len -= len_multiple8; if (len != 0) { assert(len < 8); uint8_t rand_buf[8]; if (!CRYPTO_rdrand(rand_buf)) { return 0; } OPENSSL_memcpy(buf + len_multiple8, rand_buf, len); } return 1; } #else static int hwrand(uint8_t *buf, size_t len) { return 0; } #endif #if defined(BORINGSSL_FIPS) static void rand_get_seed(uint8_t seed[CTR_DRBG_ENTROPY_LEN]) { /* We overread from /dev/urandom by a factor of 10 and XOR to whiten. */ #define FIPS_OVERREAD 10 uint8_t entropy[CTR_DRBG_ENTROPY_LEN * FIPS_OVERREAD]; CRYPTO_sysrand(entropy, sizeof(entropy)); OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN); for (size_t i = 1; i < FIPS_OVERREAD; i++) { for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) { seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j]; } } } #else static void rand_get_seed(uint8_t seed[CTR_DRBG_ENTROPY_LEN]) { /* If not in FIPS mode, we don't overread from the system entropy source. */ CRYPTO_sysrand(seed, CTR_DRBG_ENTROPY_LEN); } #endif void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len, const uint8_t user_additional_data[32]) { if (out_len == 0) { return; } struct rand_thread_state stack_state; struct rand_thread_state *state = CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND); if (state == NULL) { state = OPENSSL_malloc(sizeof(struct rand_thread_state)); if (state == NULL || !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, rand_thread_state_free)) { /* If the system is out of memory, use an ephemeral state on the * stack. */ state = &stack_state; } uint8_t seed[CTR_DRBG_ENTROPY_LEN]; rand_get_seed(seed); if (!CTR_DRBG_init(&state->drbg, seed, NULL, 0)) { abort(); } state->calls = 0; } if (state->calls >= kReseedInterval) { uint8_t seed[CTR_DRBG_ENTROPY_LEN]; rand_get_seed(seed); if (!CTR_DRBG_reseed(&state->drbg, seed, NULL, 0)) { abort(); } state->calls = 0; } /* Additional data is mixed into every CTR-DRBG call to protect, as best we * can, against forks & VM clones. We do not over-read this information and * don't reseed with it so, from the point of view of FIPS, this doesn't * provide “prediction resistance”. But, in practice, it does. */ uint8_t additional_data[32]; if (!hwrand(additional_data, sizeof(additional_data))) { /* Without a hardware RNG to save us from address-space duplication, the OS * entropy is used. */ CRYPTO_sysrand(additional_data, sizeof(additional_data)); } for (size_t i = 0; i < sizeof(additional_data); i++) { additional_data[i] ^= user_additional_data[i]; } int first_call = 1; while (out_len > 0) { size_t todo = out_len; if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) { todo = CTR_DRBG_MAX_GENERATE_LENGTH; } if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data, first_call ? sizeof(additional_data) : 0)) { abort(); } out += todo; out_len -= todo; state->calls++; first_call = 0; } if (state == &stack_state) { CTR_DRBG_clear(&state->drbg); } return; } int RAND_bytes(uint8_t *out, size_t out_len) { static const uint8_t kZeroAdditionalData[32] = {0}; RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData); return 1; } int RAND_pseudo_bytes(uint8_t *buf, size_t len) { return RAND_bytes(buf, len); } void RAND_seed(const void *buf, int num) { /* OpenSSH calls |RAND_seed| before jailing on the assumption that any needed * file descriptors etc will be opened. */ uint8_t unused; RAND_bytes(&unused, sizeof(unused)); } int RAND_load_file(const char *path, long num) { if (num < 0) { /* read the "whole file" */ return 1; } else if (num <= INT_MAX) { return (int) num; } else { return INT_MAX; } } const char *RAND_file_name(char *buf, size_t num) { return NULL; } void RAND_add(const void *buf, int num, double entropy) {} int RAND_egd(const char *path) { return 255; } int RAND_poll(void) { return 1; } int RAND_status(void) { return 1; } static const struct rand_meth_st kSSLeayMethod = { RAND_seed, RAND_bytes, RAND_cleanup, RAND_add, RAND_pseudo_bytes, RAND_status, }; RAND_METHOD *RAND_SSLeay(void) { return (RAND_METHOD*) &kSSLeayMethod; } void RAND_set_rand_method(const RAND_METHOD *method) {} void RAND_cleanup(void) {}