boringssl/crypto/bio/bio_test.cc
David Benjamin be7006adac Update third_party/googletest.
The new version of googletest deprecates INSTANTIATE_TEST_CASE_P in
favor of INSTANTIATE_TEST_SUITE_P, so apply the change.

This requires blacklisting C4628 on MSVC 2015 which says about digraphs
given foo<::std::tuple<...>>. Disable that warning. Digraphs are not
useful and C++11 apparently explicitly disambiguates that.

It also requires applying
https://github.com/google/googletest/pull/2226, to deal with a warning
in older MSVC.

Update-Note: Consumers using BoringSSL with their own copy of googletest
must ensure googletest was updated to a version from 2019-01-03 or
later for INSTANTIATE_TEST_SUITE_P to work. (I believe all relevant
consumers are fine here. If anyone can't update googletest and is
building BoringSSL tests, building with
-DINSTANTIATE_TEST_SUITE_P=INSTANTIATE_TEST_CASE_P would work as
workaround.)

Bug: chromium:936651
Change-Id: I23ada8de34a53131cab88a36a88d3185ab085c64
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35504
Reviewed-by: Adam Langley <agl@google.com>
2019-04-10 22:09:43 +00:00

326 lines
11 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <algorithm>
#include <string>
#include <gtest/gtest.h>
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../internal.h"
#include "../test/test_util.h"
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) { return close(sock); }
static std::string LastSocketError() { return strerror(errno); }
#else
static std::string LastSocketError() {
char buf[DECIMAL_SIZE(int) + 1];
BIO_snprintf(buf, sizeof(buf), "%d", WSAGetLastError());
return buf;
}
#endif
class ScopedSocket {
public:
explicit ScopedSocket(int sock) : sock_(sock) {}
~ScopedSocket() {
closesocket(sock_);
}
private:
const int sock_;
};
TEST(BIOTest, SocketConnect) {
static const char kTestMessage[] = "test";
int listening_sock = -1;
socklen_t len = 0;
sockaddr_storage ss;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ss;
struct sockaddr_in *sin = (struct sockaddr_in *) &ss;
OPENSSL_memset(&ss, 0, sizeof(ss));
ss.ss_family = AF_INET6;
listening_sock = socket(AF_INET6, SOCK_STREAM, 0);
ASSERT_NE(-1, listening_sock) << LastSocketError();
len = sizeof(*sin6);
ASSERT_EQ(1, inet_pton(AF_INET6, "::1", &sin6->sin6_addr))
<< LastSocketError();
if (bind(listening_sock, (struct sockaddr *)sin6, sizeof(*sin6)) == -1) {
closesocket(listening_sock);
ss.ss_family = AF_INET;
listening_sock = socket(AF_INET, SOCK_STREAM, 0);
ASSERT_NE(-1, listening_sock) << LastSocketError();
len = sizeof(*sin);
ASSERT_EQ(1, inet_pton(AF_INET, "127.0.0.1", &sin->sin_addr))
<< LastSocketError();
ASSERT_EQ(0, bind(listening_sock, (struct sockaddr *)sin, sizeof(*sin)))
<< LastSocketError();
}
ScopedSocket listening_sock_closer(listening_sock);
ASSERT_EQ(0, listen(listening_sock, 1)) << LastSocketError();
ASSERT_EQ(0, getsockname(listening_sock, (struct sockaddr *)&ss, &len))
<< LastSocketError();
char hostname[80];
if (ss.ss_family == AF_INET6) {
BIO_snprintf(hostname, sizeof(hostname), "[::1]:%d",
ntohs(sin6->sin6_port));
} else if (ss.ss_family == AF_INET) {
BIO_snprintf(hostname, sizeof(hostname), "127.0.0.1:%d",
ntohs(sin->sin_port));
}
// Connect to it with a connect BIO.
bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname));
ASSERT_TRUE(bio);
// Write a test message to the BIO.
ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)));
// Accept the socket.
int sock = accept(listening_sock, (struct sockaddr *) &ss, &len);
ASSERT_NE(-1, sock) << LastSocketError();
ScopedSocket sock_closer(sock);
// Check the same message is read back out.
char buf[sizeof(kTestMessage)];
ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
recv(sock, buf, sizeof(buf), 0))
<< LastSocketError();
EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf)));
}
TEST(BIOTest, Printf) {
// Test a short output, a very long one, and various sizes around
// 256 (the size of the buffer) to ensure edge cases are correct.
static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023};
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
for (size_t length : kLengths) {
SCOPED_TRACE(length);
std::string in(length, 'a');
int ret = BIO_printf(bio.get(), "test %s", in.c_str());
ASSERT_GE(ret, 0);
EXPECT_EQ(5 + length, static_cast<size_t>(ret));
const uint8_t *contents;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ("test " + in,
std::string(reinterpret_cast<const char *>(contents), len));
ASSERT_TRUE(BIO_reset(bio.get()));
}
}
static const size_t kLargeASN1PayloadLen = 8000;
struct ASN1TestParam {
bool should_succeed;
std::vector<uint8_t> input;
// suffix_len is the number of zeros to append to |input|.
size_t suffix_len;
// expected_len, if |should_succeed| is true, is the expected length of the
// ASN.1 element.
size_t expected_len;
size_t max_len;
} kASN1TestParams[] = {
{true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100},
{false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100},
{false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100},
{false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100},
// Test a large payload.
{true,
{0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
kLargeASN1PayloadLen,
4 + kLargeASN1PayloadLen,
kLargeASN1PayloadLen * 2},
{false /* max_len too short */,
{0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
kLargeASN1PayloadLen,
4 + kLargeASN1PayloadLen,
3 + kLargeASN1PayloadLen},
// Test an indefinite-length input.
{true,
{0x30, 0x80},
kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 2,
kLargeASN1PayloadLen * 2},
{false /* max_len too short */,
{0x30, 0x80},
kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 1},
};
class BIOASN1Test : public testing::TestWithParam<ASN1TestParam> {};
TEST_P(BIOASN1Test, ReadASN1) {
const ASN1TestParam& param = GetParam();
std::vector<uint8_t> input = param.input;
input.resize(input.size() + param.suffix_len, 0);
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(input.data(), input.size()));
ASSERT_TRUE(bio);
uint8_t *out;
size_t out_len;
int ok = BIO_read_asn1(bio.get(), &out, &out_len, param.max_len);
if (!ok) {
out = nullptr;
}
bssl::UniquePtr<uint8_t> out_storage(out);
ASSERT_EQ(param.should_succeed, (ok == 1));
if (param.should_succeed) {
EXPECT_EQ(Bytes(input.data(), param.expected_len), Bytes(out, out_len));
}
}
INSTANTIATE_TEST_SUITE_P(, BIOASN1Test, testing::ValuesIn(kASN1TestParams));
// Run through the tests twice, swapping |bio1| and |bio2|, for symmetry.
class BIOPairTest : public testing::TestWithParam<bool> {};
TEST_P(BIOPairTest, TestPair) {
BIO *bio1, *bio2;
ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10));
bssl::UniquePtr<BIO> free_bio1(bio1), free_bio2(bio2);
if (GetParam()) {
std::swap(bio1, bio2);
}
// Check initial states.
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
// Data written in one end may be read out the other.
uint8_t buf[20];
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Attempting to write more than 10 bytes will write partially.
EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(-1, BIO_write(bio1, "z", 1));
EXPECT_TRUE(BIO_should_write(bio1));
ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Unsuccessful reads update the read request.
EXPECT_EQ(-1, BIO_read(bio2, buf, 5));
EXPECT_TRUE(BIO_should_read(bio2));
EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1));
// The read request is clamped to the size of the buffer.
EXPECT_EQ(-1, BIO_read(bio2, buf, 20));
EXPECT_TRUE(BIO_should_read(bio2));
EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1));
// Data may be written and read in chunks.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(5, BIO_write(bio1, "67890___", 8));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(3, BIO_read(bio2, buf, 3));
EXPECT_EQ(Bytes("123"), Bytes(buf, 3));
EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Successful reads reset the read request.
EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
// Test writes and reads starting in the middle of the ring buffer and
// wrapping to front.
EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8));
EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(3, BIO_read(bio2, buf, 3));
EXPECT_EQ(Bytes("abc"), Bytes(buf, 3));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Data may flow from both ends in parallel.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5, BIO_write(bio2, "67890", 5));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
EXPECT_EQ(Bytes("67890"), Bytes(buf, 5));
// Closing the write end causes an EOF on the read half, after draining.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_TRUE(BIO_shutdown_wr(bio1));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf)));
// A closed write end may not be written to.
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(-1, BIO_write(bio1, "_____", 5));
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err));
EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err));
// The other end is still functional.
EXPECT_EQ(5, BIO_write(bio2, "12345", 5));
ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
}
INSTANTIATE_TEST_SUITE_P(, BIOPairTest, testing::Values(false, true));