boringssl/crypto/sha/sha256.c
Brian Smith 00461cf201 Improve crypto/digest/md32_common.h mechanism.
The documentation in md32_common.h is now (more) correct with respect
to the most important details of the layout of |HASH_CTX|. The
documentation explaining why sha512.c doesn't use md32_common.h is now
more accurate as well.

Before, the C implementations of HASH_BLOCK_DATA_ORDER took a pointer
to the |HASH_CTX| and the assembly language implementations tool a
pointer to the hash state |h| member of |HASH_CTX|. (This worked
because |h| is always the first member of |HASH_CTX|.) Now, the C
implementations take a pointer directly to |h| too.

The definitions of |MD4_CTX|, |MD5_CTX|, and |SHA1_CTX| were changed to
be consistent with |SHA256_CTX| and |SHA512_CTX| in storing the hash
state in an array. This will break source compatibility with any
external code that accesses the hash state directly, but will not
affect binary compatibility.

The second parameter of |HASH_BLOCK_DATA_ORDER| is now of type
|const uint8_t *|; previously it was |void *| and all implementations
had a |uint8_t *data| variable to access it as an array of bytes.

This change paves the way for future refactorings such as automatically
generating the |*_Init| functions and/or sharing one I-U-F
implementation across all digest algorithms.

Change-Id: I30513bb40b5f1d2c8932551d54073c35484b3f8b
Reviewed-on: https://boringssl-review.googlesource.com/6401
Reviewed-by: Adam Langley <agl@google.com>
2015-11-03 02:04:38 +00:00

369 lines
14 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/sha.h>
#include <string.h>
#include <openssl/mem.h>
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
#define SHA256_ASM
#endif
int SHA224_Init(SHA256_CTX *sha) {
memset(sha, 0, sizeof(SHA256_CTX));
sha->h[0] = 0xc1059ed8UL;
sha->h[1] = 0x367cd507UL;
sha->h[2] = 0x3070dd17UL;
sha->h[3] = 0xf70e5939UL;
sha->h[4] = 0xffc00b31UL;
sha->h[5] = 0x68581511UL;
sha->h[6] = 0x64f98fa7UL;
sha->h[7] = 0xbefa4fa4UL;
sha->md_len = SHA224_DIGEST_LENGTH;
return 1;
}
int SHA256_Init(SHA256_CTX *sha) {
memset(sha, 0, sizeof(SHA256_CTX));
sha->h[0] = 0x6a09e667UL;
sha->h[1] = 0xbb67ae85UL;
sha->h[2] = 0x3c6ef372UL;
sha->h[3] = 0xa54ff53aUL;
sha->h[4] = 0x510e527fUL;
sha->h[5] = 0x9b05688cUL;
sha->h[6] = 0x1f83d9abUL;
sha->h[7] = 0x5be0cd19UL;
sha->md_len = SHA256_DIGEST_LENGTH;
return 1;
}
uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out) {
SHA256_CTX ctx;
static uint8_t buf[SHA224_DIGEST_LENGTH];
/* TODO(fork): remove this static buffer. */
if (out == NULL) {
out = buf;
}
SHA224_Init(&ctx);
SHA256_Update(&ctx, data, len);
SHA256_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out) {
SHA256_CTX ctx;
static uint8_t buf[SHA256_DIGEST_LENGTH];
/* TODO(fork): remove this static buffer. */
if (out == NULL) {
out = buf;
}
SHA256_Init(&ctx);
SHA256_Update(&ctx, data, len);
SHA256_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) {
return SHA256_Update(ctx, data, len);
}
int SHA224_Final(uint8_t *md, SHA256_CTX *ctx) {
return SHA256_Final(md, ctx);
}
#define DATA_ORDER_IS_BIG_ENDIAN
#define HASH_CTX SHA256_CTX
#define HASH_CBLOCK 64
/* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
* default: case below covers for it. It's not clear however if it's permitted
* to truncate to amount of bytes not divisible by 4. I bet not, but if it is,
* then default: case shall be extended. For reference. Idea behind separate
* cases for pre-defined lenghts is to let the compiler decide if it's
* appropriate to unroll small loops.
*
* TODO(davidben): The small |md_len| case is one of the few places a low-level
* hash 'final' function can fail. This should never happen. */
#define HASH_MAKE_STRING(c, s) \
do { \
uint32_t ll; \
unsigned int nn; \
switch ((c)->md_len) { \
case SHA224_DIGEST_LENGTH: \
for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \
ll = (c)->h[nn]; \
(void) HOST_l2c(ll, (s)); \
} \
break; \
case SHA256_DIGEST_LENGTH: \
for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \
ll = (c)->h[nn]; \
(void) HOST_l2c(ll, (s)); \
} \
break; \
default: \
if ((c)->md_len > SHA256_DIGEST_LENGTH) { \
return 0; \
} \
for (nn = 0; nn < (c)->md_len / 4; nn++) { \
ll = (c)->h[nn]; \
(void) HOST_l2c(ll, (s)); \
} \
break; \
} \
} while (0)
#define HASH_UPDATE SHA256_Update
#define HASH_TRANSFORM SHA256_Transform
#define HASH_FINAL SHA256_Final
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
#ifndef SHA256_ASM
static
#endif
void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num);
#include "../digest/md32_common.h"
#ifndef SHA256_ASM
static const uint32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};
/* FIPS specification refers to right rotations, while our ROTATE macro
* is left one. This is why you might notice that rotation coefficients
* differ from those observed in FIPS document by 32-N... */
#define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10))
#define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7))
#define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3))
#define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10))
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
do { \
T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \
h = Sigma0(a) + Maj(a, b, c); \
d += T1; \
h += T1; \
} while (0)
#define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \
do { \
s0 = X[(i + 1) & 0x0f]; \
s0 = sigma0(s0); \
s1 = X[(i + 14) & 0x0f]; \
s1 = sigma1(s1); \
T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \
ROUND_00_15(i, a, b, c, d, e, f, g, h); \
} while (0)
static void sha256_block_data_order(uint32_t *state, const uint8_t *data,
size_t num) {
uint32_t a, b, c, d, e, f, g, h, s0, s1, T1;
uint32_t X[16];
int i;
const union {
long one;
char little;
} is_endian = {1};
while (num--) {
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
if (!is_endian.little && ((uintptr_t)data % 4) == 0) {
const uint32_t *W = (const uint32_t *)data;
T1 = X[0] = W[0];
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = W[1];
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = W[2];
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = W[3];
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = W[4];
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = W[5];
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = W[6];
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = W[7];
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = W[8];
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = W[9];
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = W[10];
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = W[11];
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = W[12];
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = W[13];
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = W[14];
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = W[15];
ROUND_00_15(15, b, c, d, e, f, g, h, a);
data += HASH_CBLOCK;
} else {
uint32_t l;
HOST_c2l(data, l);
T1 = X[0] = l;
ROUND_00_15(0, a, b, c, d, e, f, g, h);
HOST_c2l(data, l);
T1 = X[1] = l;
ROUND_00_15(1, h, a, b, c, d, e, f, g);
HOST_c2l(data, l);
T1 = X[2] = l;
ROUND_00_15(2, g, h, a, b, c, d, e, f);
HOST_c2l(data, l);
T1 = X[3] = l;
ROUND_00_15(3, f, g, h, a, b, c, d, e);
HOST_c2l(data, l);
T1 = X[4] = l;
ROUND_00_15(4, e, f, g, h, a, b, c, d);
HOST_c2l(data, l);
T1 = X[5] = l;
ROUND_00_15(5, d, e, f, g, h, a, b, c);
HOST_c2l(data, l);
T1 = X[6] = l;
ROUND_00_15(6, c, d, e, f, g, h, a, b);
HOST_c2l(data, l);
T1 = X[7] = l;
ROUND_00_15(7, b, c, d, e, f, g, h, a);
HOST_c2l(data, l);
T1 = X[8] = l;
ROUND_00_15(8, a, b, c, d, e, f, g, h);
HOST_c2l(data, l);
T1 = X[9] = l;
ROUND_00_15(9, h, a, b, c, d, e, f, g);
HOST_c2l(data, l);
T1 = X[10] = l;
ROUND_00_15(10, g, h, a, b, c, d, e, f);
HOST_c2l(data, l);
T1 = X[11] = l;
ROUND_00_15(11, f, g, h, a, b, c, d, e);
HOST_c2l(data, l);
T1 = X[12] = l;
ROUND_00_15(12, e, f, g, h, a, b, c, d);
HOST_c2l(data, l);
T1 = X[13] = l;
ROUND_00_15(13, d, e, f, g, h, a, b, c);
HOST_c2l(data, l);
T1 = X[14] = l;
ROUND_00_15(14, c, d, e, f, g, h, a, b);
HOST_c2l(data, l);
T1 = X[15] = l;
ROUND_00_15(15, b, c, d, e, f, g, h, a);
}
for (i = 16; i < 64; i += 8) {
ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
}
#endif /* SHA256_ASM */