boringssl/ssl/dtls_method.c
David Benjamin 02edcd0098 Reject stray post-Finished messages in DTLS.
This is in preparation for switching finish_handshake to a
release_current_message hook. finish_handshake in DTLS is also
responsible for releasing any memory associated with extra messages in
the handshake.

Except that's not right and we need to make it an error anyway. Given
that the rest of the DTLS dispatch layer already strongly assumes there
is only one message in epoch one, putting the check in the fragment
processing works fine enough. Add tests for this.

This will certainly need revising when DTLS 1.3 happens (perhaps just a
version check, perhaps bringing finish_handshake back as a function that
can fail... which means we need a state just before SSL_ST_OK), but DTLS
1.3 post-handshake messages haven't really been written down, so let's
do the easy thing for now and add a test for when it gets more
interesting.

This removes the sequence number reset in the DTLS code. That reset
never did anything becase we don't and never will renego. We should make
sure DTLS 1.3 does not bring the reset back for post-handshake stuff.
(It was wrong in 1.2 too. Penultimate-flight retransmits and renego
requests are ambiguous in DTLS.)

BUG=83

Change-Id: I33d645a8550f73e74606030b9815fdac0c9fb682
Reviewed-on: https://boringssl-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@google.com>
2016-07-28 22:53:04 +00:00

208 lines
6.3 KiB
C

/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include "internal.h"
static uint16_t dtls1_version_from_wire(uint16_t wire_version) {
uint16_t tls_version = ~wire_version;
uint16_t version = tls_version + 0x0201;
/* If either component overflowed, clamp it so comparisons still work. */
if ((version >> 8) < (tls_version >> 8)) {
version = 0xff00 | (version & 0xff);
}
if ((version & 0xff) < (tls_version & 0xff)) {
version = (version & 0xff00) | 0xff;
}
/* DTLS 1.0 maps to TLS 1.1, not TLS 1.0. */
if (version == TLS1_VERSION) {
version = TLS1_1_VERSION;
}
return version;
}
static uint16_t dtls1_version_to_wire(uint16_t version) {
assert(version >= TLS1_1_VERSION);
/* DTLS 1.0 maps to TLS 1.1, not TLS 1.0. */
if (version == TLS1_1_VERSION) {
return DTLS1_VERSION;
}
return ~(version - 0x0201);
}
static void dtls1_finish_handshake(SSL *ssl) {
dtls_clear_incoming_messages(ssl);
ssl->init_msg = NULL;
ssl->init_num = 0;
}
static int dtls1_set_read_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
/* Cipher changes are illegal when there are buffered incoming messages. */
if (dtls_has_incoming_messages(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFERED_MESSAGES_ON_CIPHER_CHANGE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
SSL_AEAD_CTX_free(aead_ctx);
return 0;
}
ssl->d1->r_epoch++;
memset(&ssl->d1->bitmap, 0, sizeof(ssl->d1->bitmap));
memset(ssl->s3->read_sequence, 0, sizeof(ssl->s3->read_sequence));
SSL_AEAD_CTX_free(ssl->s3->aead_read_ctx);
ssl->s3->aead_read_ctx = aead_ctx;
return 1;
}
static int dtls1_set_write_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
ssl->d1->w_epoch++;
memcpy(ssl->d1->last_write_sequence, ssl->s3->write_sequence,
sizeof(ssl->s3->write_sequence));
memset(ssl->s3->write_sequence, 0, sizeof(ssl->s3->write_sequence));
SSL_AEAD_CTX_free(ssl->s3->aead_write_ctx);
ssl->s3->aead_write_ctx = aead_ctx;
return 1;
}
static const SSL_PROTOCOL_METHOD kDTLSProtocolMethod = {
1 /* is_dtls */,
TLS1_1_VERSION,
TLS1_2_VERSION,
dtls1_version_from_wire,
dtls1_version_to_wire,
dtls1_new,
dtls1_free,
dtls1_finish_handshake,
dtls1_get_message,
dtls1_hash_current_message,
dtls1_read_app_data,
dtls1_read_change_cipher_spec,
dtls1_read_close_notify,
dtls1_write_app_data,
dtls1_dispatch_alert,
dtls1_supports_cipher,
dtls1_init_message,
dtls1_finish_message,
dtls1_write_message,
dtls1_send_change_cipher_spec,
dtls1_expect_flight,
dtls1_received_flight,
dtls1_set_read_state,
dtls1_set_write_state,
};
const SSL_METHOD *DTLS_method(void) {
static const SSL_METHOD kMethod = {
0,
&kDTLSProtocolMethod,
};
return &kMethod;
}
/* Legacy version-locked methods. */
const SSL_METHOD *DTLSv1_2_method(void) {
static const SSL_METHOD kMethod = {
DTLS1_2_VERSION,
&kDTLSProtocolMethod,
};
return &kMethod;
}
const SSL_METHOD *DTLSv1_method(void) {
static const SSL_METHOD kMethod = {
DTLS1_VERSION,
&kDTLSProtocolMethod,
};
return &kMethod;
}
/* Legacy side-specific methods. */
const SSL_METHOD *DTLSv1_2_server_method(void) {
return DTLSv1_2_method();
}
const SSL_METHOD *DTLSv1_server_method(void) {
return DTLSv1_method();
}
const SSL_METHOD *DTLSv1_2_client_method(void) {
return DTLSv1_2_method();
}
const SSL_METHOD *DTLSv1_client_method(void) {
return DTLSv1_method();
}
const SSL_METHOD *DTLS_server_method(void) {
return DTLS_method();
}
const SSL_METHOD *DTLS_client_method(void) {
return DTLS_method();
}