0a67eba62d
The unwind tester suggests Windows doesn't care, but the documentation says that unwind codes should be sorted in descending offset, which means the last instruction should be first. https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#struct-unwind_code Bug: 259 Change-Id: I21e54c362e18e0405f980005112cc3f7c417c70c Reviewed-on: https://boringssl-review.googlesource.com/c/34785 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
414 lines
12 KiB
Perl
414 lines
12 KiB
Perl
#!/usr/bin/env perl
|
||
# Copyright (c) 2019, Google Inc.
|
||
#
|
||
# Permission to use, copy, modify, and/or distribute this software for any
|
||
# purpose with or without fee is hereby granted, provided that the above
|
||
# copyright notice and this permission notice appear in all copies.
|
||
#
|
||
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
||
# ghash-ssse3-x86_64.pl is a constant-time variant of the traditional 4-bit
|
||
# table-based GHASH implementation. It requires SSSE3 instructions.
|
||
#
|
||
# For background, the table-based strategy is a 4-bit windowed multiplication.
|
||
# It precomputes all 4-bit multiples of H (this is 16 128-bit rows), then loops
|
||
# over 4-bit windows of the input and indexes them up into the table. Visually,
|
||
# it multiplies as in the schoolbook multiplication diagram below, but with
|
||
# more terms. (Each term is 4 bits, so there are 32 terms in each row.) First
|
||
# it incorporates the terms labeled '1' by indexing the most significant term
|
||
# of X into the table. Then it shifts and repeats for '2' and so on.
|
||
#
|
||
# hhhhhh
|
||
# * xxxxxx
|
||
# ============
|
||
# 666666
|
||
# 555555
|
||
# 444444
|
||
# 333333
|
||
# 222222
|
||
# 111111
|
||
#
|
||
# This implementation changes the order. We treat the table as a 16×16 matrix
|
||
# and transpose it. The first row is then the first byte of each multiple of H,
|
||
# and so on. We then reorder terms as below. Observe that the terms labeled '1'
|
||
# and '2' are all lookups into the first row, etc. This maps well to the SSSE3
|
||
# pshufb instruction, using alternating terms of X in parallel as indices. This
|
||
# alternation is needed because pshufb maps 4 bits to 8 bits. Then we shift and
|
||
# repeat for each row.
|
||
#
|
||
# hhhhhh
|
||
# * xxxxxx
|
||
# ============
|
||
# 224466
|
||
# 113355
|
||
# 224466
|
||
# 113355
|
||
# 224466
|
||
# 113355
|
||
#
|
||
# Next we account for GCM's confusing bit order. The "first" bit is the least
|
||
# significant coefficient, but GCM treats the most sigificant bit within a byte
|
||
# as first. Bytes are little-endian, and bits are big-endian. We reverse the
|
||
# bytes in XMM registers for a consistent bit and byte ordering, but this means
|
||
# the least significant bit is the most significant coefficient and vice versa.
|
||
#
|
||
# For consistency, "low", "high", "left-shift", and "right-shift" refer to the
|
||
# bit ordering within the XMM register, rather than the reversed coefficient
|
||
# ordering. Low bits are less significant bits and more significant
|
||
# coefficients. Right-shifts move from MSB to the LSB and correspond to
|
||
# increasing the power of each coefficient.
|
||
#
|
||
# Note this bit reversal enters into the table's column indices. H*1 is stored
|
||
# in column 0b1000 and H*x^3 is stored in column 0b0001. It also means earlier
|
||
# table rows contain more significant coefficients, so we iterate forwards.
|
||
|
||
use strict;
|
||
|
||
my $flavour = shift;
|
||
my $output = shift;
|
||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||
|
||
my $win64 = 0;
|
||
$win64 = 1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||
|
||
$0 =~ m/(.*[\/\\])[^\/\\]+$/;
|
||
my $dir = $1;
|
||
my $xlate;
|
||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||
( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||
die "can't locate x86_64-xlate.pl";
|
||
|
||
open OUT, "| \"$^X\" \"$xlate\" $flavour \"$output\"";
|
||
*STDOUT = *OUT;
|
||
|
||
my ($Xi, $Htable, $in, $len) = $win64 ? ("%rcx", "%rdx", "%r8", "%r9") :
|
||
("%rdi", "%rsi", "%rdx", "%rcx");
|
||
|
||
|
||
my $code = <<____;
|
||
.text
|
||
|
||
# gcm_gmult_ssse3 multiplies |Xi| by |Htable| and writes the result to |Xi|.
|
||
# |Xi| is represented in GHASH's serialized byte representation. |Htable| is
|
||
# formatted as described above.
|
||
# void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
|
||
.type gcm_gmult_ssse3, \@abi-omnipotent
|
||
.globl gcm_gmult_ssse3
|
||
.align 16
|
||
gcm_gmult_ssse3:
|
||
.cfi_startproc
|
||
.Lgmult_seh_begin:
|
||
____
|
||
$code .= <<____ if ($win64);
|
||
subq \$40, %rsp
|
||
.Lgmult_seh_allocstack:
|
||
movdqa %xmm6, (%rsp)
|
||
.Lgmult_seh_save_xmm6:
|
||
movdqa %xmm10, 16(%rsp)
|
||
.Lgmult_seh_save_xmm10:
|
||
.Lgmult_seh_prolog_end:
|
||
____
|
||
$code .= <<____;
|
||
movdqu ($Xi), %xmm0
|
||
movdqa .Lreverse_bytes(%rip), %xmm10
|
||
movdqa .Llow4_mask(%rip), %xmm2
|
||
|
||
# Reverse input bytes to deserialize.
|
||
pshufb %xmm10, %xmm0
|
||
|
||
# Split each byte into low (%xmm0) and high (%xmm1) halves.
|
||
movdqa %xmm2, %xmm1
|
||
pandn %xmm0, %xmm1
|
||
psrld \$4, %xmm1
|
||
pand %xmm2, %xmm0
|
||
|
||
# Maintain the result in %xmm2 (the value) and %xmm3 (carry bits). Note
|
||
# that, due to bit reversal, %xmm3 contains bits that fall off when
|
||
# right-shifting, not left-shifting.
|
||
pxor %xmm2, %xmm2
|
||
pxor %xmm3, %xmm3
|
||
____
|
||
|
||
my $call_counter = 0;
|
||
# process_rows returns assembly code to process $rows rows of the table. On
|
||
# input, $Htable stores the pointer to the next row. %xmm0 and %xmm1 store the
|
||
# low and high halves of the input. The result so far is passed in %xmm2. %xmm3
|
||
# must be zero. On output, $Htable is advanced to the next row and %xmm2 is
|
||
# updated. %xmm3 remains zero. It clobbers %rax, %xmm4, %xmm5, and %xmm6.
|
||
sub process_rows {
|
||
my ($rows) = @_;
|
||
$call_counter++;
|
||
|
||
# Shifting whole XMM registers by bits is complex. psrldq shifts by bytes,
|
||
# and psrlq shifts the two 64-bit halves separately. Each row produces 8
|
||
# bits of carry, and the reduction needs an additional 7-bit shift. This
|
||
# must fit in 64 bits so reduction can use psrlq. This allows up to 7 rows
|
||
# at a time.
|
||
die "Carry register would overflow 64 bits." if ($rows*8 + 7 > 64);
|
||
|
||
return <<____;
|
||
movq \$$rows, %rax
|
||
.Loop_row_$call_counter:
|
||
movdqa ($Htable), %xmm4
|
||
leaq 16($Htable), $Htable
|
||
|
||
# Right-shift %xmm2 and %xmm3 by 8 bytes.
|
||
movdqa %xmm2, %xmm6
|
||
palignr \$1, %xmm3, %xmm6
|
||
movdqa %xmm6, %xmm3
|
||
psrldq \$1, %xmm2
|
||
|
||
# Load the next table row and index the low and high bits of the input.
|
||
# Note the low (respectively, high) half corresponds to more
|
||
# (respectively, less) significant coefficients.
|
||
movdqa %xmm4, %xmm5
|
||
pshufb %xmm0, %xmm4
|
||
pshufb %xmm1, %xmm5
|
||
|
||
# Add the high half (%xmm5) without shifting.
|
||
pxor %xmm5, %xmm2
|
||
|
||
# Add the low half (%xmm4). This must be right-shifted by 4 bits. First,
|
||
# add into the carry register (%xmm3).
|
||
movdqa %xmm4, %xmm5
|
||
psllq \$60, %xmm5
|
||
movdqa %xmm5, %xmm6
|
||
pslldq \$8, %xmm6
|
||
pxor %xmm6, %xmm3
|
||
|
||
# Next, add into %xmm2.
|
||
psrldq \$8, %xmm5
|
||
pxor %xmm5, %xmm2
|
||
psrlq \$4, %xmm4
|
||
pxor %xmm4, %xmm2
|
||
|
||
subq \$1, %rax
|
||
jnz .Loop_row_$call_counter
|
||
|
||
# Reduce the carry register. The reduction polynomial is 1 + x + x^2 +
|
||
# x^7, so we shift and XOR four times.
|
||
pxor %xmm3, %xmm2 # x^0 = 0
|
||
psrlq \$1, %xmm3
|
||
pxor %xmm3, %xmm2 # x^1 = x
|
||
psrlq \$1, %xmm3
|
||
pxor %xmm3, %xmm2 # x^(1+1) = x^2
|
||
psrlq \$5, %xmm3
|
||
pxor %xmm3, %xmm2 # x^(1+1+5) = x^7
|
||
pxor %xmm3, %xmm3
|
||
____
|
||
}
|
||
|
||
# We must reduce at least once every 7 rows, so divide into three chunks.
|
||
$code .= process_rows(5);
|
||
$code .= process_rows(5);
|
||
$code .= process_rows(6);
|
||
|
||
$code .= <<____;
|
||
# Store the result. Reverse bytes to serialize.
|
||
pshufb %xmm10, %xmm2
|
||
movdqu %xmm2, ($Xi)
|
||
|
||
# Zero any registers which contain secrets.
|
||
pxor %xmm0, %xmm0
|
||
pxor %xmm1, %xmm1
|
||
pxor %xmm2, %xmm2
|
||
pxor %xmm3, %xmm3
|
||
pxor %xmm4, %xmm4
|
||
pxor %xmm5, %xmm5
|
||
pxor %xmm6, %xmm6
|
||
____
|
||
$code .= <<____ if ($win64);
|
||
movdqa (%rsp), %xmm6
|
||
movdqa 16(%rsp), %xmm10
|
||
addq \$40, %rsp
|
||
____
|
||
$code .= <<____;
|
||
ret
|
||
.Lgmult_seh_end:
|
||
.cfi_endproc
|
||
.size gcm_gmult_ssse3,.-gcm_gmult_ssse3
|
||
____
|
||
|
||
$code .= <<____;
|
||
# gcm_ghash_ssse3 incorporates |len| bytes from |in| to |Xi|, using |Htable| as
|
||
# the key. It writes the result back to |Xi|. |Xi| is represented in GHASH's
|
||
# serialized byte representation. |Htable| is formatted as described above.
|
||
# void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
|
||
# size_t len);
|
||
.type gcm_ghash_ssse3, \@abi-omnipotent
|
||
.globl gcm_ghash_ssse3
|
||
.align 16
|
||
gcm_ghash_ssse3:
|
||
.Lghash_seh_begin:
|
||
.cfi_startproc
|
||
____
|
||
$code .= <<____ if ($win64);
|
||
subq \$56, %rsp
|
||
.Lghash_seh_allocstack:
|
||
movdqa %xmm6, (%rsp)
|
||
.Lghash_seh_save_xmm6:
|
||
movdqa %xmm10, 16(%rsp)
|
||
.Lghash_seh_save_xmm10:
|
||
movdqa %xmm11, 32(%rsp)
|
||
.Lghash_seh_save_xmm11:
|
||
.Lghash_seh_prolog_end:
|
||
____
|
||
$code .= <<____;
|
||
movdqu ($Xi), %xmm0
|
||
movdqa .Lreverse_bytes(%rip), %xmm10
|
||
movdqa .Llow4_mask(%rip), %xmm11
|
||
|
||
# This function only processes whole blocks.
|
||
andq \$-16, $len
|
||
|
||
# Reverse input bytes to deserialize. We maintain the running
|
||
# total in %xmm0.
|
||
pshufb %xmm10, %xmm0
|
||
|
||
# Iterate over each block. On entry to each iteration, %xmm3 is zero.
|
||
pxor %xmm3, %xmm3
|
||
.Loop_ghash:
|
||
# Incorporate the next block of input.
|
||
movdqu ($in), %xmm1
|
||
pshufb %xmm10, %xmm1 # Reverse bytes.
|
||
pxor %xmm1, %xmm0
|
||
|
||
# Split each byte into low (%xmm0) and high (%xmm1) halves.
|
||
movdqa %xmm11, %xmm1
|
||
pandn %xmm0, %xmm1
|
||
psrld \$4, %xmm1
|
||
pand %xmm11, %xmm0
|
||
|
||
# Maintain the result in %xmm2 (the value) and %xmm3 (carry bits). Note
|
||
# that, due to bit reversal, %xmm3 contains bits that fall off when
|
||
# right-shifting, not left-shifting.
|
||
pxor %xmm2, %xmm2
|
||
# %xmm3 is already zero at this point.
|
||
____
|
||
|
||
# We must reduce at least once every 7 rows, so divide into three chunks.
|
||
$code .= process_rows(5);
|
||
$code .= process_rows(5);
|
||
$code .= process_rows(6);
|
||
|
||
$code .= <<____;
|
||
movdqa %xmm2, %xmm0
|
||
|
||
# Rewind $Htable for the next iteration.
|
||
leaq -256($Htable), $Htable
|
||
|
||
# Advance input and continue.
|
||
leaq 16($in), $in
|
||
subq \$16, $len
|
||
jnz .Loop_ghash
|
||
|
||
# Reverse bytes and store the result.
|
||
pshufb %xmm10, %xmm0
|
||
movdqu %xmm0, ($Xi)
|
||
|
||
# Zero any registers which contain secrets.
|
||
pxor %xmm0, %xmm0
|
||
pxor %xmm1, %xmm1
|
||
pxor %xmm2, %xmm2
|
||
pxor %xmm3, %xmm3
|
||
pxor %xmm4, %xmm4
|
||
pxor %xmm5, %xmm5
|
||
pxor %xmm6, %xmm6
|
||
____
|
||
$code .= <<____ if ($win64);
|
||
movdqa (%rsp), %xmm6
|
||
movdqa 16(%rsp), %xmm10
|
||
movdqa 32(%rsp), %xmm11
|
||
addq \$56, %rsp
|
||
____
|
||
$code .= <<____;
|
||
ret
|
||
.Lghash_seh_end:
|
||
.cfi_endproc
|
||
.size gcm_ghash_ssse3,.-gcm_ghash_ssse3
|
||
|
||
.align 16
|
||
# .Lreverse_bytes is a permutation which, if applied with pshufb, reverses the
|
||
# bytes in an XMM register.
|
||
.Lreverse_bytes:
|
||
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
|
||
# .Llow4_mask is an XMM mask which selects the low four bits of each byte.
|
||
.Llow4_mask:
|
||
.quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f
|
||
____
|
||
|
||
if ($win64) {
|
||
# Add unwind metadata for SEH.
|
||
#
|
||
# TODO(davidben): This is all manual right now. Once we've added SEH tests,
|
||
# add support for emitting these in x86_64-xlate.pl, probably based on MASM
|
||
# and Yasm's unwind directives, and unify with CFI. Then upstream it to
|
||
# replace the error-prone and non-standard custom handlers.
|
||
|
||
# See https://docs.microsoft.com/en-us/cpp/build/struct-unwind-code?view=vs-2017
|
||
my $UWOP_ALLOC_SMALL = 2;
|
||
my $UWOP_SAVE_XMM128 = 8;
|
||
|
||
$code .= <<____;
|
||
.section .pdata
|
||
.align 4
|
||
.rva .Lgmult_seh_begin
|
||
.rva .Lgmult_seh_end
|
||
.rva .Lgmult_seh_info
|
||
|
||
.rva .Lghash_seh_begin
|
||
.rva .Lghash_seh_end
|
||
.rva .Lghash_seh_info
|
||
|
||
.section .xdata
|
||
.align 8
|
||
.Lgmult_seh_info:
|
||
.byte 1 # version 1, no flags
|
||
.byte .Lgmult_seh_prolog_end-.Lgmult_seh_begin
|
||
.byte 5 # num_slots = 1 + 2 + 2
|
||
.byte 0 # no frame register
|
||
|
||
.byte .Lgmult_seh_save_xmm10-.Lgmult_seh_begin
|
||
.byte @{[$UWOP_SAVE_XMM128 | (10 << 4)]}
|
||
.value 1
|
||
|
||
.byte .Lgmult_seh_save_xmm6-.Lgmult_seh_begin
|
||
.byte @{[$UWOP_SAVE_XMM128 | (6 << 4)]}
|
||
.value 0
|
||
|
||
.byte .Lgmult_seh_allocstack-.Lgmult_seh_begin
|
||
.byte @{[$UWOP_ALLOC_SMALL | (((40 - 8) / 8) << 4)]}
|
||
|
||
.align 8
|
||
.Lghash_seh_info:
|
||
.byte 1 # version 1, no flags
|
||
.byte .Lghash_seh_prolog_end-.Lghash_seh_begin
|
||
.byte 7 # num_slots = 1 + 2 + 2 + 2
|
||
.byte 0 # no frame register
|
||
|
||
.byte .Lghash_seh_save_xmm11-.Lghash_seh_begin
|
||
.byte @{[$UWOP_SAVE_XMM128 | (11 << 4)]}
|
||
.value 2
|
||
|
||
.byte .Lghash_seh_save_xmm10-.Lghash_seh_begin
|
||
.byte @{[$UWOP_SAVE_XMM128 | (10 << 4)]}
|
||
.value 1
|
||
|
||
.byte .Lghash_seh_save_xmm6-.Lghash_seh_begin
|
||
.byte @{[$UWOP_SAVE_XMM128 | (6 << 4)]}
|
||
.value 0
|
||
|
||
.byte .Lghash_seh_allocstack-.Lghash_seh_begin
|
||
.byte @{[$UWOP_ALLOC_SMALL | (((56 - 8) / 8) << 4)]}
|
||
____
|
||
}
|
||
|
||
print $code;
|
||
close STDOUT;
|