boringssl/crypto/fipsmodule/modes/asm/ghash-ssse3-x86_64.pl
David Benjamin 0a67eba62d Fix the order of Windows unwind codes.
The unwind tester suggests Windows doesn't care, but the documentation
says that unwind codes should be sorted in descending offset, which
means the last instruction should be first.

https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#struct-unwind_code

Bug: 259
Change-Id: I21e54c362e18e0405f980005112cc3f7c417c70c
Reviewed-on: https://boringssl-review.googlesource.com/c/34785
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2019-02-05 19:38:23 +00:00

414 lines
12 KiB
Perl
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env perl
# Copyright (c) 2019, Google Inc.
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ghash-ssse3-x86_64.pl is a constant-time variant of the traditional 4-bit
# table-based GHASH implementation. It requires SSSE3 instructions.
#
# For background, the table-based strategy is a 4-bit windowed multiplication.
# It precomputes all 4-bit multiples of H (this is 16 128-bit rows), then loops
# over 4-bit windows of the input and indexes them up into the table. Visually,
# it multiplies as in the schoolbook multiplication diagram below, but with
# more terms. (Each term is 4 bits, so there are 32 terms in each row.) First
# it incorporates the terms labeled '1' by indexing the most significant term
# of X into the table. Then it shifts and repeats for '2' and so on.
#
# hhhhhh
# * xxxxxx
# ============
# 666666
# 555555
# 444444
# 333333
# 222222
# 111111
#
# This implementation changes the order. We treat the table as a 16×16 matrix
# and transpose it. The first row is then the first byte of each multiple of H,
# and so on. We then reorder terms as below. Observe that the terms labeled '1'
# and '2' are all lookups into the first row, etc. This maps well to the SSSE3
# pshufb instruction, using alternating terms of X in parallel as indices. This
# alternation is needed because pshufb maps 4 bits to 8 bits. Then we shift and
# repeat for each row.
#
# hhhhhh
# * xxxxxx
# ============
# 224466
# 113355
# 224466
# 113355
# 224466
# 113355
#
# Next we account for GCM's confusing bit order. The "first" bit is the least
# significant coefficient, but GCM treats the most sigificant bit within a byte
# as first. Bytes are little-endian, and bits are big-endian. We reverse the
# bytes in XMM registers for a consistent bit and byte ordering, but this means
# the least significant bit is the most significant coefficient and vice versa.
#
# For consistency, "low", "high", "left-shift", and "right-shift" refer to the
# bit ordering within the XMM register, rather than the reversed coefficient
# ordering. Low bits are less significant bits and more significant
# coefficients. Right-shifts move from MSB to the LSB and correspond to
# increasing the power of each coefficient.
#
# Note this bit reversal enters into the table's column indices. H*1 is stored
# in column 0b1000 and H*x^3 is stored in column 0b0001. It also means earlier
# table rows contain more significant coefficients, so we iterate forwards.
use strict;
my $flavour = shift;
my $output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
my $win64 = 0;
$win64 = 1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/;
my $dir = $1;
my $xlate;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT, "| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT = *OUT;
my ($Xi, $Htable, $in, $len) = $win64 ? ("%rcx", "%rdx", "%r8", "%r9") :
("%rdi", "%rsi", "%rdx", "%rcx");
my $code = <<____;
.text
# gcm_gmult_ssse3 multiplies |Xi| by |Htable| and writes the result to |Xi|.
# |Xi| is represented in GHASH's serialized byte representation. |Htable| is
# formatted as described above.
# void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
.type gcm_gmult_ssse3, \@abi-omnipotent
.globl gcm_gmult_ssse3
.align 16
gcm_gmult_ssse3:
.cfi_startproc
.Lgmult_seh_begin:
____
$code .= <<____ if ($win64);
subq \$40, %rsp
.Lgmult_seh_allocstack:
movdqa %xmm6, (%rsp)
.Lgmult_seh_save_xmm6:
movdqa %xmm10, 16(%rsp)
.Lgmult_seh_save_xmm10:
.Lgmult_seh_prolog_end:
____
$code .= <<____;
movdqu ($Xi), %xmm0
movdqa .Lreverse_bytes(%rip), %xmm10
movdqa .Llow4_mask(%rip), %xmm2
# Reverse input bytes to deserialize.
pshufb %xmm10, %xmm0
# Split each byte into low (%xmm0) and high (%xmm1) halves.
movdqa %xmm2, %xmm1
pandn %xmm0, %xmm1
psrld \$4, %xmm1
pand %xmm2, %xmm0
# Maintain the result in %xmm2 (the value) and %xmm3 (carry bits). Note
# that, due to bit reversal, %xmm3 contains bits that fall off when
# right-shifting, not left-shifting.
pxor %xmm2, %xmm2
pxor %xmm3, %xmm3
____
my $call_counter = 0;
# process_rows returns assembly code to process $rows rows of the table. On
# input, $Htable stores the pointer to the next row. %xmm0 and %xmm1 store the
# low and high halves of the input. The result so far is passed in %xmm2. %xmm3
# must be zero. On output, $Htable is advanced to the next row and %xmm2 is
# updated. %xmm3 remains zero. It clobbers %rax, %xmm4, %xmm5, and %xmm6.
sub process_rows {
my ($rows) = @_;
$call_counter++;
# Shifting whole XMM registers by bits is complex. psrldq shifts by bytes,
# and psrlq shifts the two 64-bit halves separately. Each row produces 8
# bits of carry, and the reduction needs an additional 7-bit shift. This
# must fit in 64 bits so reduction can use psrlq. This allows up to 7 rows
# at a time.
die "Carry register would overflow 64 bits." if ($rows*8 + 7 > 64);
return <<____;
movq \$$rows, %rax
.Loop_row_$call_counter:
movdqa ($Htable), %xmm4
leaq 16($Htable), $Htable
# Right-shift %xmm2 and %xmm3 by 8 bytes.
movdqa %xmm2, %xmm6
palignr \$1, %xmm3, %xmm6
movdqa %xmm6, %xmm3
psrldq \$1, %xmm2
# Load the next table row and index the low and high bits of the input.
# Note the low (respectively, high) half corresponds to more
# (respectively, less) significant coefficients.
movdqa %xmm4, %xmm5
pshufb %xmm0, %xmm4
pshufb %xmm1, %xmm5
# Add the high half (%xmm5) without shifting.
pxor %xmm5, %xmm2
# Add the low half (%xmm4). This must be right-shifted by 4 bits. First,
# add into the carry register (%xmm3).
movdqa %xmm4, %xmm5
psllq \$60, %xmm5
movdqa %xmm5, %xmm6
pslldq \$8, %xmm6
pxor %xmm6, %xmm3
# Next, add into %xmm2.
psrldq \$8, %xmm5
pxor %xmm5, %xmm2
psrlq \$4, %xmm4
pxor %xmm4, %xmm2
subq \$1, %rax
jnz .Loop_row_$call_counter
# Reduce the carry register. The reduction polynomial is 1 + x + x^2 +
# x^7, so we shift and XOR four times.
pxor %xmm3, %xmm2 # x^0 = 0
psrlq \$1, %xmm3
pxor %xmm3, %xmm2 # x^1 = x
psrlq \$1, %xmm3
pxor %xmm3, %xmm2 # x^(1+1) = x^2
psrlq \$5, %xmm3
pxor %xmm3, %xmm2 # x^(1+1+5) = x^7
pxor %xmm3, %xmm3
____
}
# We must reduce at least once every 7 rows, so divide into three chunks.
$code .= process_rows(5);
$code .= process_rows(5);
$code .= process_rows(6);
$code .= <<____;
# Store the result. Reverse bytes to serialize.
pshufb %xmm10, %xmm2
movdqu %xmm2, ($Xi)
# Zero any registers which contain secrets.
pxor %xmm0, %xmm0
pxor %xmm1, %xmm1
pxor %xmm2, %xmm2
pxor %xmm3, %xmm3
pxor %xmm4, %xmm4
pxor %xmm5, %xmm5
pxor %xmm6, %xmm6
____
$code .= <<____ if ($win64);
movdqa (%rsp), %xmm6
movdqa 16(%rsp), %xmm10
addq \$40, %rsp
____
$code .= <<____;
ret
.Lgmult_seh_end:
.cfi_endproc
.size gcm_gmult_ssse3,.-gcm_gmult_ssse3
____
$code .= <<____;
# gcm_ghash_ssse3 incorporates |len| bytes from |in| to |Xi|, using |Htable| as
# the key. It writes the result back to |Xi|. |Xi| is represented in GHASH's
# serialized byte representation. |Htable| is formatted as described above.
# void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
# size_t len);
.type gcm_ghash_ssse3, \@abi-omnipotent
.globl gcm_ghash_ssse3
.align 16
gcm_ghash_ssse3:
.Lghash_seh_begin:
.cfi_startproc
____
$code .= <<____ if ($win64);
subq \$56, %rsp
.Lghash_seh_allocstack:
movdqa %xmm6, (%rsp)
.Lghash_seh_save_xmm6:
movdqa %xmm10, 16(%rsp)
.Lghash_seh_save_xmm10:
movdqa %xmm11, 32(%rsp)
.Lghash_seh_save_xmm11:
.Lghash_seh_prolog_end:
____
$code .= <<____;
movdqu ($Xi), %xmm0
movdqa .Lreverse_bytes(%rip), %xmm10
movdqa .Llow4_mask(%rip), %xmm11
# This function only processes whole blocks.
andq \$-16, $len
# Reverse input bytes to deserialize. We maintain the running
# total in %xmm0.
pshufb %xmm10, %xmm0
# Iterate over each block. On entry to each iteration, %xmm3 is zero.
pxor %xmm3, %xmm3
.Loop_ghash:
# Incorporate the next block of input.
movdqu ($in), %xmm1
pshufb %xmm10, %xmm1 # Reverse bytes.
pxor %xmm1, %xmm0
# Split each byte into low (%xmm0) and high (%xmm1) halves.
movdqa %xmm11, %xmm1
pandn %xmm0, %xmm1
psrld \$4, %xmm1
pand %xmm11, %xmm0
# Maintain the result in %xmm2 (the value) and %xmm3 (carry bits). Note
# that, due to bit reversal, %xmm3 contains bits that fall off when
# right-shifting, not left-shifting.
pxor %xmm2, %xmm2
# %xmm3 is already zero at this point.
____
# We must reduce at least once every 7 rows, so divide into three chunks.
$code .= process_rows(5);
$code .= process_rows(5);
$code .= process_rows(6);
$code .= <<____;
movdqa %xmm2, %xmm0
# Rewind $Htable for the next iteration.
leaq -256($Htable), $Htable
# Advance input and continue.
leaq 16($in), $in
subq \$16, $len
jnz .Loop_ghash
# Reverse bytes and store the result.
pshufb %xmm10, %xmm0
movdqu %xmm0, ($Xi)
# Zero any registers which contain secrets.
pxor %xmm0, %xmm0
pxor %xmm1, %xmm1
pxor %xmm2, %xmm2
pxor %xmm3, %xmm3
pxor %xmm4, %xmm4
pxor %xmm5, %xmm5
pxor %xmm6, %xmm6
____
$code .= <<____ if ($win64);
movdqa (%rsp), %xmm6
movdqa 16(%rsp), %xmm10
movdqa 32(%rsp), %xmm11
addq \$56, %rsp
____
$code .= <<____;
ret
.Lghash_seh_end:
.cfi_endproc
.size gcm_ghash_ssse3,.-gcm_ghash_ssse3
.align 16
# .Lreverse_bytes is a permutation which, if applied with pshufb, reverses the
# bytes in an XMM register.
.Lreverse_bytes:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
# .Llow4_mask is an XMM mask which selects the low four bits of each byte.
.Llow4_mask:
.quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f
____
if ($win64) {
# Add unwind metadata for SEH.
#
# TODO(davidben): This is all manual right now. Once we've added SEH tests,
# add support for emitting these in x86_64-xlate.pl, probably based on MASM
# and Yasm's unwind directives, and unify with CFI. Then upstream it to
# replace the error-prone and non-standard custom handlers.
# See https://docs.microsoft.com/en-us/cpp/build/struct-unwind-code?view=vs-2017
my $UWOP_ALLOC_SMALL = 2;
my $UWOP_SAVE_XMM128 = 8;
$code .= <<____;
.section .pdata
.align 4
.rva .Lgmult_seh_begin
.rva .Lgmult_seh_end
.rva .Lgmult_seh_info
.rva .Lghash_seh_begin
.rva .Lghash_seh_end
.rva .Lghash_seh_info
.section .xdata
.align 8
.Lgmult_seh_info:
.byte 1 # version 1, no flags
.byte .Lgmult_seh_prolog_end-.Lgmult_seh_begin
.byte 5 # num_slots = 1 + 2 + 2
.byte 0 # no frame register
.byte .Lgmult_seh_save_xmm10-.Lgmult_seh_begin
.byte @{[$UWOP_SAVE_XMM128 | (10 << 4)]}
.value 1
.byte .Lgmult_seh_save_xmm6-.Lgmult_seh_begin
.byte @{[$UWOP_SAVE_XMM128 | (6 << 4)]}
.value 0
.byte .Lgmult_seh_allocstack-.Lgmult_seh_begin
.byte @{[$UWOP_ALLOC_SMALL | (((40 - 8) / 8) << 4)]}
.align 8
.Lghash_seh_info:
.byte 1 # version 1, no flags
.byte .Lghash_seh_prolog_end-.Lghash_seh_begin
.byte 7 # num_slots = 1 + 2 + 2 + 2
.byte 0 # no frame register
.byte .Lghash_seh_save_xmm11-.Lghash_seh_begin
.byte @{[$UWOP_SAVE_XMM128 | (11 << 4)]}
.value 2
.byte .Lghash_seh_save_xmm10-.Lghash_seh_begin
.byte @{[$UWOP_SAVE_XMM128 | (10 << 4)]}
.value 1
.byte .Lghash_seh_save_xmm6-.Lghash_seh_begin
.byte @{[$UWOP_SAVE_XMM128 | (6 << 4)]}
.value 0
.byte .Lghash_seh_allocstack-.Lghash_seh_begin
.byte @{[$UWOP_ALLOC_SMALL | (((56 - 8) / 8) << 4)]}
____
}
print $code;
close STDOUT;