boringssl/crypto/ec/wnaf.c
Brian Smith 054e682675 Eliminate unnecessary includes from low-level crypto modules.
Beyond generally eliminating unnecessary includes, eliminate as many
includes of headers that declare/define particularly error-prone
functionality like strlen, malloc, and free. crypto/err/internal.h was
added to remove the dependency on openssl/thread.h from the public
openssl/err.h header. The include of <stdlib.h> in openssl/mem.h was
retained since it defines OPENSSL_malloc and friends as macros around
the stdlib.h functions. The public x509.h, x509v3.h, and ssl.h headers
were not changed in order to minimize breakage of source compatibility
with external code.

Change-Id: I0d264b73ad0a720587774430b2ab8f8275960329
Reviewed-on: https://boringssl-review.googlesource.com/4220
Reviewed-by: Adam Langley <agl@google.com>
2015-04-13 20:49:18 +00:00

877 lines
24 KiB
C

/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "internal.h"
/* This file implements the wNAF-based interleaving multi-exponentation method
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
* for multiplication with precomputation, we use wNAF splitting
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
* */
/* structure for precomputed multiples of the generator */
typedef struct ec_pre_comp_st {
size_t blocksize; /* block size for wNAF splitting */
size_t numblocks; /* max. number of blocks for which we have precomputation */
size_t w; /* window size */
EC_POINT **points; /* array with pre-calculated multiples of generator:
* 'num' pointers to EC_POINT objects followed by a NULL */
size_t num; /* numblocks * 2^(w-1) */
int references;
} EC_PRE_COMP;
static EC_PRE_COMP *ec_pre_comp_new(void) {
EC_PRE_COMP *ret = NULL;
ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
if (!ret) {
OPENSSL_PUT_ERROR(EC, ec_pre_comp_new, ERR_R_MALLOC_FAILURE);
return ret;
}
ret->blocksize = 8; /* default */
ret->numblocks = 0;
ret->w = 4; /* default */
ret->points = NULL;
ret->num = 0;
ret->references = 1;
return ret;
}
void *ec_pre_comp_dup(EC_PRE_COMP *pre_comp) {
if (pre_comp == NULL) {
return NULL;
}
CRYPTO_add(&pre_comp->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
return pre_comp;
}
void ec_pre_comp_free(EC_PRE_COMP *pre_comp) {
int i;
if (!pre_comp) {
return;
}
i = CRYPTO_add(&pre_comp->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0) {
return;
}
if (pre_comp->points) {
EC_POINT **p;
for (p = pre_comp->points; *p != NULL; p++) {
EC_POINT_free(*p);
}
OPENSSL_free(pre_comp->points);
}
OPENSSL_free(pre_comp);
}
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
* This is an array r[] of values that are either zero or odd with an
* absolute value less than 2^w satisfying
* scalar = \sum_j r[j]*2^j
* where at most one of any w+1 consecutive digits is non-zero
* with the exception that the most significant digit may be only
* w-1 zeros away from that next non-zero digit.
*/
static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
int window_val;
int ok = 0;
signed char *r = NULL;
int sign = 1;
int bit, next_bit, mask;
size_t len = 0, j;
if (BN_is_zero(scalar)) {
r = OPENSSL_malloc(1);
if (!r) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_MALLOC_FAILURE);
goto err;
}
r[0] = 0;
*ret_len = 1;
return r;
}
if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
values less than 2^7 */
{
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
bit = 1 << w; /* at most 128 */
next_bit = bit << 1; /* at most 256 */
mask = next_bit - 1; /* at most 255 */
if (BN_is_negative(scalar)) {
sign = -1;
}
if (scalar->d == NULL || scalar->top == 0) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
len = BN_num_bits(scalar);
r = OPENSSL_malloc(
len +
1); /* modified wNAF may be one digit longer than binary representation
* (*ret_len will be set to the actual length, i.e. at most
* BN_num_bits(scalar) + 1) */
if (r == NULL) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_MALLOC_FAILURE);
goto err;
}
window_val = scalar->d[0] & mask;
j = 0;
while ((window_val != 0) ||
(j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
{
int digit = 0;
/* 0 <= window_val <= 2^(w+1) */
if (window_val & 1) {
/* 0 < window_val < 2^(w+1) */
if (window_val & bit) {
digit = window_val - next_bit; /* -2^w < digit < 0 */
#if 1 /* modified wNAF */
if (j + w + 1 >= len) {
/* special case for generating modified wNAFs:
* no new bits will be added into window_val,
* so using a positive digit here will decrease
* the total length of the representation */
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
}
#endif
} else {
digit = window_val; /* 0 < digit < 2^w */
}
if (digit <= -bit || digit >= bit || !(digit & 1)) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
window_val -= digit;
/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
* for modified window NAFs, it may also be 2^w
*/
if (window_val != 0 && window_val != next_bit && window_val != bit) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
}
r[j++] = sign * digit;
window_val >>= 1;
window_val += bit * BN_is_bit_set(scalar, j + w);
if (window_val > next_bit) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (j > len + 1) {
OPENSSL_PUT_ERROR(EC, compute_wNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
len = j;
ok = 1;
err:
if (!ok) {
OPENSSL_free(r);
r = NULL;
}
if (ok) {
*ret_len = len;
}
return r;
}
/* TODO: table should be optimised for the wNAF-based implementation,
* sometimes smaller windows will give better performance
* (thus the boundaries should be increased)
*/
#define EC_window_bits_for_scalar_size(b) \
((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \
? 4 \
: (b) >= 70 ? 3 : (b) >= 20 \
? 2 \
: 1))
/* Compute
* \sum scalars[i]*points[i],
* also including
* scalar*generator
* in the addition if scalar != NULL
*/
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;
size_t totalnum;
size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
size_t pre_points_per_block = 0;
size_t i, j;
int k;
int r_is_inverted = 0;
int r_is_at_infinity = 1;
size_t *wsize = NULL; /* individual window sizes */
signed char **wNAF = NULL; /* individual wNAFs */
size_t *wNAF_len = NULL;
size_t max_len = 0;
size_t num_val;
EC_POINT **val = NULL; /* precomputation */
EC_POINT **v;
EC_POINT ***val_sub =
NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
const EC_PRE_COMP *pre_comp = NULL;
int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like
* other scalars,
* i.e. precomputation is not available */
int ret = 0;
if (group->meth != r->meth) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if ((scalar == NULL) && (num == 0)) {
return EC_POINT_set_to_infinity(group, r);
}
for (i = 0; i < num; i++) {
if (group->meth != points[i]->meth) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
}
if (scalar != NULL) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, EC_R_UNDEFINED_GENERATOR);
goto err;
}
/* look if we can use precomputed multiples of generator */
pre_comp = group->pre_comp;
if (pre_comp && pre_comp->numblocks &&
(EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) {
blocksize = pre_comp->blocksize;
/* determine maximum number of blocks that wNAF splitting may yield
* (NB: maximum wNAF length is bit length plus one) */
numblocks = (BN_num_bits(scalar) / blocksize) + 1;
/* we cannot use more blocks than we have precomputation for */
if (numblocks > pre_comp->numblocks) {
numblocks = pre_comp->numblocks;
}
pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
/* check that pre_comp looks sane */
if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
} else {
/* can't use precomputation */
pre_comp = NULL;
numblocks = 1;
num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
}
}
totalnum = num + numblocks;
wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
wNAF = OPENSSL_malloc((totalnum + 1) *
sizeof wNAF[0]); /* includes space for pivot */
val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
/* Ensure wNAF is initialised in case we end up going to err. */
if (wNAF) {
wNAF[0] = NULL; /* preliminary pivot */
}
if (!wsize || !wNAF_len || !wNAF || !val_sub) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE);
goto err;
}
/* num_val will be the total number of temporarily precomputed points */
num_val = 0;
for (i = 0; i < num + num_scalar; i++) {
size_t bits;
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
wsize[i] = EC_window_bits_for_scalar_size(bits);
num_val += (size_t)1 << (wsize[i] - 1);
wNAF[i + 1] = NULL; /* make sure we always have a pivot */
wNAF[i] =
compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
if (wNAF[i] == NULL) {
goto err;
}
if (wNAF_len[i] > max_len) {
max_len = wNAF_len[i];
}
}
if (numblocks) {
/* we go here iff scalar != NULL */
if (pre_comp == NULL) {
if (num_scalar != 1) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
/* we have already generated a wNAF for 'scalar' */
} else {
signed char *tmp_wNAF = NULL;
size_t tmp_len = 0;
if (num_scalar != 0) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
/* use the window size for which we have precomputation */
wsize[num] = pre_comp->w;
tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
if (!tmp_wNAF) {
goto err;
}
if (tmp_len <= max_len) {
/* One of the other wNAFs is at least as long
* as the wNAF belonging to the generator,
* so wNAF splitting will not buy us anything. */
numblocks = 1; /* don't use wNAF splitting */
totalnum = num + numblocks;
wNAF[num] = tmp_wNAF;
wNAF[num + 1] = NULL;
wNAF_len[num] = tmp_len;
/* pre_comp->points starts with the points that we need here: */
val_sub[num] = pre_comp->points;
} else {
/* don't include tmp_wNAF directly into wNAF array
* - use wNAF splitting and include the blocks */
signed char *pp;
EC_POINT **tmp_points;
if (tmp_len < numblocks * blocksize) {
/* possibly we can do with fewer blocks than estimated */
numblocks = (tmp_len + blocksize - 1) / blocksize;
if (numblocks > pre_comp->numblocks) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
totalnum = num + numblocks;
}
/* split wNAF in 'numblocks' parts */
pp = tmp_wNAF;
tmp_points = pre_comp->points;
for (i = num; i < totalnum; i++) {
if (i < totalnum - 1) {
wNAF_len[i] = blocksize;
if (tmp_len < blocksize) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
tmp_len -= blocksize;
} else {
/* last block gets whatever is left
* (this could be more or less than 'blocksize'!) */
wNAF_len[i] = tmp_len;
}
wNAF[i + 1] = NULL;
wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
if (wNAF[i] == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE);
OPENSSL_free(tmp_wNAF);
goto err;
}
memcpy(wNAF[i], pp, wNAF_len[i]);
if (wNAF_len[i] > max_len) {
max_len = wNAF_len[i];
}
if (*tmp_points == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
OPENSSL_free(tmp_wNAF);
goto err;
}
val_sub[i] = tmp_points;
tmp_points += pre_points_per_block;
pp += blocksize;
}
OPENSSL_free(tmp_wNAF);
}
}
}
/* All points we precompute now go into a single array 'val'.
* 'val_sub[i]' is a pointer to the subarray for the i-th point,
* or to a subarray of 'pre_comp->points' if we already have precomputation.
*/
val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
if (val == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_MALLOC_FAILURE);
goto err;
}
val[num_val] = NULL; /* pivot element */
/* allocate points for precomputation */
v = val;
for (i = 0; i < num + num_scalar; i++) {
val_sub[i] = v;
for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
*v = EC_POINT_new(group);
if (*v == NULL) {
goto err;
}
v++;
}
}
if (!(v == val + num_val)) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_mul, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!(tmp = EC_POINT_new(group))) {
goto err;
}
/* prepare precomputed values:
* val_sub[i][0] := points[i]
* val_sub[i][1] := 3 * points[i]
* val_sub[i][2] := 5 * points[i]
* ...
*/
for (i = 0; i < num + num_scalar; i++) {
if (i < num) {
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
goto err;
}
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
goto err;
}
if (wsize[i] > 1) {
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
goto err;
}
for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
goto err;
}
}
}
}
#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
goto err;
}
#endif
r_is_at_infinity = 1;
for (k = max_len - 1; k >= 0; k--) {
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
goto err;
}
for (i = 0; i < totalnum; i++) {
if (wNAF_len[i] > (size_t)k) {
int digit = wNAF[i][k];
int is_neg;
if (digit) {
is_neg = digit < 0;
if (is_neg) {
digit = -digit;
}
if (is_neg != r_is_inverted) {
if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
r_is_inverted = !r_is_inverted;
}
/* digit > 0 */
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
goto err;
}
r_is_at_infinity = 0;
} else {
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
goto err;
}
}
}
}
}
}
if (r_is_at_infinity) {
if (!EC_POINT_set_to_infinity(group, r)) {
goto err;
}
} else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
ret = 1;
err:
if (new_ctx != NULL) {
BN_CTX_free(new_ctx);
}
if (tmp != NULL) {
EC_POINT_free(tmp);
}
if (wsize != NULL) {
OPENSSL_free(wsize);
}
if (wNAF_len != NULL) {
OPENSSL_free(wNAF_len);
}
if (wNAF != NULL) {
signed char **w;
for (w = wNAF; *w != NULL; w++) {
OPENSSL_free(*w);
}
OPENSSL_free(wNAF);
}
if (val != NULL) {
for (v = val; *v != NULL; v++) {
EC_POINT_clear_free(*v);
}
OPENSSL_free(val);
}
if (val_sub != NULL) {
OPENSSL_free(val_sub);
}
return ret;
}
/* ec_wNAF_precompute_mult()
* creates an EC_PRE_COMP object with preprecomputed multiples of the generator
* for use with wNAF splitting as implemented in ec_wNAF_mul().
*
* 'pre_comp->points' is an array of multiples of the generator
* of the following form:
* points[0] = generator;
* points[1] = 3 * generator;
* ...
* points[2^(w-1)-1] = (2^(w-1)-1) * generator;
* points[2^(w-1)] = 2^blocksize * generator;
* points[2^(w-1)+1] = 3 * 2^blocksize * generator;
* ...
* points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) *
*generator
* points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) *
*generator
* ...
* points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) *
*generator
* points[2^(w-1)*numblocks] = NULL
*/
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) {
const EC_POINT *generator;
EC_POINT *tmp_point = NULL, *base = NULL, **var;
BN_CTX *new_ctx = NULL;
BIGNUM *order;
size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
EC_POINT **points = NULL;
EC_PRE_COMP *pre_comp;
int ret = 0;
/* if there is an old EC_PRE_COMP object, throw it away */
if (group->pre_comp) {
ec_pre_comp_free(group->pre_comp);
group->pre_comp = NULL;
}
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, EC_R_UNDEFINED_GENERATOR);
return 0;
}
pre_comp = ec_pre_comp_new();
if (pre_comp == NULL) {
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
}
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (order == NULL) {
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx)) {
goto err;
}
if (BN_is_zero(order)) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, EC_R_UNKNOWN_ORDER);
goto err;
}
bits = BN_num_bits(order);
/* The following parameters mean we precompute (approximately)
* one point per bit.
*
* TBD: The combination 8, 4 is perfect for 160 bits; for other
* bit lengths, other parameter combinations might provide better
* efficiency.
*/
blocksize = 8;
w = 4;
if (EC_window_bits_for_scalar_size(bits) > w) {
/* let's not make the window too small ... */
w = EC_window_bits_for_scalar_size(bits);
}
numblocks = (bits + blocksize - 1) /
blocksize; /* max. number of blocks to use for wNAF splitting */
pre_points_per_block = (size_t)1 << (w - 1);
num = pre_points_per_block *
numblocks; /* number of points to compute and store */
points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
if (!points) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE);
goto err;
}
var = points;
var[num] = NULL; /* pivot */
for (i = 0; i < num; i++) {
if ((var[i] = EC_POINT_new(group)) == NULL) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_POINT_copy(base, generator)) {
goto err;
}
/* do the precomputation */
for (i = 0; i < numblocks; i++) {
size_t j;
if (!EC_POINT_dbl(group, tmp_point, base, ctx)) {
goto err;
}
if (!EC_POINT_copy(*var++, base)) {
goto err;
}
for (j = 1; j < pre_points_per_block; j++, var++) {
/* calculate odd multiples of the current base point */
if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) {
goto err;
}
}
if (i < numblocks - 1) {
/* get the next base (multiply current one by 2^blocksize) */
size_t k;
if (blocksize <= 2) {
OPENSSL_PUT_ERROR(EC, ec_wNAF_precompute_mult, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!EC_POINT_dbl(group, base, tmp_point, ctx)) {
goto err;
}
for (k = 2; k < blocksize; k++) {
if (!EC_POINT_dbl(group, base, base, ctx)) {
goto err;
}
}
}
}
if (!EC_POINTs_make_affine(group, num, points, ctx)) {
goto err;
}
pre_comp->blocksize = blocksize;
pre_comp->numblocks = numblocks;
pre_comp->w = w;
pre_comp->points = points;
points = NULL;
pre_comp->num = num;
group->pre_comp = pre_comp;
pre_comp = NULL;
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
}
if (new_ctx != NULL) {
BN_CTX_free(new_ctx);
}
if (pre_comp) {
ec_pre_comp_free(pre_comp);
}
if (points) {
EC_POINT **p;
for (p = points; *p != NULL; p++) {
EC_POINT_free(*p);
}
OPENSSL_free(points);
}
if (tmp_point) {
EC_POINT_free(tmp_point);
}
if (base) {
EC_POINT_free(base);
}
return ret;
}
int ec_wNAF_have_precompute_mult(const EC_GROUP *group) {
return group->pre_comp != NULL;
}