Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 
 
 
 
 

343 rader
12 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. #include "../../internal.h"
  60. #if !defined(OPENSSL_NO_ASM) && \
  61. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  62. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  63. #define SHA256_ASM
  64. #endif
  65. int SHA224_Init(SHA256_CTX *sha) {
  66. OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
  67. sha->h[0] = 0xc1059ed8UL;
  68. sha->h[1] = 0x367cd507UL;
  69. sha->h[2] = 0x3070dd17UL;
  70. sha->h[3] = 0xf70e5939UL;
  71. sha->h[4] = 0xffc00b31UL;
  72. sha->h[5] = 0x68581511UL;
  73. sha->h[6] = 0x64f98fa7UL;
  74. sha->h[7] = 0xbefa4fa4UL;
  75. sha->md_len = SHA224_DIGEST_LENGTH;
  76. return 1;
  77. }
  78. int SHA256_Init(SHA256_CTX *sha) {
  79. OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
  80. sha->h[0] = 0x6a09e667UL;
  81. sha->h[1] = 0xbb67ae85UL;
  82. sha->h[2] = 0x3c6ef372UL;
  83. sha->h[3] = 0xa54ff53aUL;
  84. sha->h[4] = 0x510e527fUL;
  85. sha->h[5] = 0x9b05688cUL;
  86. sha->h[6] = 0x1f83d9abUL;
  87. sha->h[7] = 0x5be0cd19UL;
  88. sha->md_len = SHA256_DIGEST_LENGTH;
  89. return 1;
  90. }
  91. uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out) {
  92. SHA256_CTX ctx;
  93. SHA224_Init(&ctx);
  94. SHA224_Update(&ctx, data, len);
  95. SHA224_Final(out, &ctx);
  96. OPENSSL_cleanse(&ctx, sizeof(ctx));
  97. return out;
  98. }
  99. uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out) {
  100. SHA256_CTX ctx;
  101. SHA256_Init(&ctx);
  102. SHA256_Update(&ctx, data, len);
  103. SHA256_Final(out, &ctx);
  104. OPENSSL_cleanse(&ctx, sizeof(ctx));
  105. return out;
  106. }
  107. int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) {
  108. return SHA256_Update(ctx, data, len);
  109. }
  110. int SHA224_Final(uint8_t *md, SHA256_CTX *ctx) {
  111. return SHA256_Final(md, ctx);
  112. }
  113. #define DATA_ORDER_IS_BIG_ENDIAN
  114. #define HASH_CTX SHA256_CTX
  115. #define HASH_CBLOCK 64
  116. // Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  117. // default: case below covers for it. It's not clear however if it's permitted
  118. // to truncate to amount of bytes not divisible by 4. I bet not, but if it is,
  119. // then default: case shall be extended. For reference. Idea behind separate
  120. // cases for pre-defined lenghts is to let the compiler decide if it's
  121. // appropriate to unroll small loops.
  122. //
  123. // TODO(davidben): The small |md_len| case is one of the few places a low-level
  124. // hash 'final' function can fail. This should never happen.
  125. #define HASH_MAKE_STRING(c, s) \
  126. do { \
  127. uint32_t ll; \
  128. unsigned int nn; \
  129. switch ((c)->md_len) { \
  130. case SHA224_DIGEST_LENGTH: \
  131. for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \
  132. ll = (c)->h[nn]; \
  133. HOST_l2c(ll, (s)); \
  134. } \
  135. break; \
  136. case SHA256_DIGEST_LENGTH: \
  137. for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \
  138. ll = (c)->h[nn]; \
  139. HOST_l2c(ll, (s)); \
  140. } \
  141. break; \
  142. default: \
  143. if ((c)->md_len > SHA256_DIGEST_LENGTH) { \
  144. return 0; \
  145. } \
  146. for (nn = 0; nn < (c)->md_len / 4; nn++) { \
  147. ll = (c)->h[nn]; \
  148. HOST_l2c(ll, (s)); \
  149. } \
  150. break; \
  151. } \
  152. } while (0)
  153. #define HASH_UPDATE SHA256_Update
  154. #define HASH_TRANSFORM SHA256_Transform
  155. #define HASH_FINAL SHA256_Final
  156. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  157. #ifndef SHA256_ASM
  158. static
  159. #endif
  160. void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num);
  161. #include "../digest/md32_common.h"
  162. #ifndef SHA256_ASM
  163. static const uint32_t K256[64] = {
  164. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
  165. 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
  166. 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
  167. 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  168. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
  169. 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
  170. 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
  171. 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  172. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
  173. 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
  174. 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
  175. 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  176. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};
  177. #define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n))))
  178. // FIPS specification refers to right rotations, while our ROTATE macro
  179. // is left one. This is why you might notice that rotation coefficients
  180. // differ from those observed in FIPS document by 32-N...
  181. #define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10))
  182. #define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7))
  183. #define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3))
  184. #define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10))
  185. #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  186. #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  187. #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
  188. do { \
  189. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \
  190. h = Sigma0(a) + Maj(a, b, c); \
  191. d += T1; \
  192. h += T1; \
  193. } while (0)
  194. #define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \
  195. do { \
  196. s0 = X[(i + 1) & 0x0f]; \
  197. s0 = sigma0(s0); \
  198. s1 = X[(i + 14) & 0x0f]; \
  199. s1 = sigma1(s1); \
  200. T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \
  201. ROUND_00_15(i, a, b, c, d, e, f, g, h); \
  202. } while (0)
  203. static void sha256_block_data_order(uint32_t *state, const uint8_t *data,
  204. size_t num) {
  205. uint32_t a, b, c, d, e, f, g, h, s0, s1, T1;
  206. uint32_t X[16];
  207. int i;
  208. while (num--) {
  209. a = state[0];
  210. b = state[1];
  211. c = state[2];
  212. d = state[3];
  213. e = state[4];
  214. f = state[5];
  215. g = state[6];
  216. h = state[7];
  217. uint32_t l;
  218. HOST_c2l(data, l);
  219. T1 = X[0] = l;
  220. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  221. HOST_c2l(data, l);
  222. T1 = X[1] = l;
  223. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  224. HOST_c2l(data, l);
  225. T1 = X[2] = l;
  226. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  227. HOST_c2l(data, l);
  228. T1 = X[3] = l;
  229. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  230. HOST_c2l(data, l);
  231. T1 = X[4] = l;
  232. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  233. HOST_c2l(data, l);
  234. T1 = X[5] = l;
  235. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  236. HOST_c2l(data, l);
  237. T1 = X[6] = l;
  238. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  239. HOST_c2l(data, l);
  240. T1 = X[7] = l;
  241. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  242. HOST_c2l(data, l);
  243. T1 = X[8] = l;
  244. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  245. HOST_c2l(data, l);
  246. T1 = X[9] = l;
  247. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  248. HOST_c2l(data, l);
  249. T1 = X[10] = l;
  250. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  251. HOST_c2l(data, l);
  252. T1 = X[11] = l;
  253. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  254. HOST_c2l(data, l);
  255. T1 = X[12] = l;
  256. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  257. HOST_c2l(data, l);
  258. T1 = X[13] = l;
  259. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  260. HOST_c2l(data, l);
  261. T1 = X[14] = l;
  262. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  263. HOST_c2l(data, l);
  264. T1 = X[15] = l;
  265. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  266. for (i = 16; i < 64; i += 8) {
  267. ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
  268. ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
  269. ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
  270. ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
  271. ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
  272. ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
  273. ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
  274. ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
  275. }
  276. state[0] += a;
  277. state[1] += b;
  278. state[2] += c;
  279. state[3] += d;
  280. state[4] += e;
  281. state[5] += f;
  282. state[6] += g;
  283. state[7] += h;
  284. }
  285. }
  286. #endif // !SHA256_ASM
  287. void SHA256_TransformBlocks(uint32_t state[8], const uint8_t *data,
  288. size_t num_blocks) {
  289. sha256_block_data_order(state, data, num_blocks);
  290. }
  291. #undef DATA_ORDER_IS_BIG_ENDIAN
  292. #undef HASH_CTX
  293. #undef HASH_CBLOCK
  294. #undef HASH_MAKE_STRING
  295. #undef HASH_UPDATE
  296. #undef HASH_TRANSFORM
  297. #undef HASH_FINAL
  298. #undef HASH_BLOCK_DATA_ORDER
  299. #undef ROTATE
  300. #undef Sigma0
  301. #undef Sigma1
  302. #undef sigma0
  303. #undef sigma1
  304. #undef Ch
  305. #undef Maj
  306. #undef ROUND_00_15
  307. #undef ROUND_16_63
  308. #undef HOST_c2l
  309. #undef HOST_l2c