You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

609 regels
21 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. #include "../../internal.h"
  60. // IMPLEMENTATION NOTES.
  61. //
  62. // The 32-bit hash algorithms share a common byte-order neutral collector and
  63. // padding function implementations that operate on unaligned data,
  64. // ../md32_common.h. This SHA-512 implementation does not. Reasons
  65. // [in reverse order] are:
  66. //
  67. // - It's the only 64-bit hash algorithm for the moment of this writing,
  68. // there is no need for common collector/padding implementation [yet];
  69. // - By supporting only a transform function that operates on *aligned* data
  70. // the collector/padding function is simpler and easier to optimize.
  71. #if !defined(OPENSSL_NO_ASM) && \
  72. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  73. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  74. #define SHA512_ASM
  75. #endif
  76. #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  77. defined(__ARM_FEATURE_UNALIGNED)
  78. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  79. #endif
  80. int SHA384_Init(SHA512_CTX *sha) {
  81. sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
  82. sha->h[1] = UINT64_C(0x629a292a367cd507);
  83. sha->h[2] = UINT64_C(0x9159015a3070dd17);
  84. sha->h[3] = UINT64_C(0x152fecd8f70e5939);
  85. sha->h[4] = UINT64_C(0x67332667ffc00b31);
  86. sha->h[5] = UINT64_C(0x8eb44a8768581511);
  87. sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
  88. sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
  89. sha->Nl = 0;
  90. sha->Nh = 0;
  91. sha->num = 0;
  92. sha->md_len = SHA384_DIGEST_LENGTH;
  93. return 1;
  94. }
  95. int SHA512_Init(SHA512_CTX *sha) {
  96. sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
  97. sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
  98. sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
  99. sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
  100. sha->h[4] = UINT64_C(0x510e527fade682d1);
  101. sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
  102. sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
  103. sha->h[7] = UINT64_C(0x5be0cd19137e2179);
  104. sha->Nl = 0;
  105. sha->Nh = 0;
  106. sha->num = 0;
  107. sha->md_len = SHA512_DIGEST_LENGTH;
  108. return 1;
  109. }
  110. uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
  111. SHA512_CTX ctx;
  112. SHA384_Init(&ctx);
  113. SHA384_Update(&ctx, data, len);
  114. SHA384_Final(out, &ctx);
  115. OPENSSL_cleanse(&ctx, sizeof(ctx));
  116. return out;
  117. }
  118. uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
  119. SHA512_CTX ctx;
  120. SHA512_Init(&ctx);
  121. SHA512_Update(&ctx, data, len);
  122. SHA512_Final(out, &ctx);
  123. OPENSSL_cleanse(&ctx, sizeof(ctx));
  124. return out;
  125. }
  126. #if !defined(SHA512_ASM)
  127. static
  128. #endif
  129. void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
  130. int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
  131. return SHA512_Final(md, sha);
  132. }
  133. int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
  134. return SHA512_Update(sha, data, len);
  135. }
  136. void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) {
  137. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  138. if ((size_t)block % sizeof(c->u.d[0]) != 0) {
  139. OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p));
  140. block = c->u.p;
  141. }
  142. #endif
  143. sha512_block_data_order(c->h, (uint64_t *)block, 1);
  144. }
  145. int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
  146. uint64_t l;
  147. uint8_t *p = c->u.p;
  148. const uint8_t *data = (const uint8_t *)in_data;
  149. if (len == 0) {
  150. return 1;
  151. }
  152. l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
  153. if (l < c->Nl) {
  154. c->Nh++;
  155. }
  156. if (sizeof(len) >= 8) {
  157. c->Nh += (((uint64_t)len) >> 61);
  158. }
  159. c->Nl = l;
  160. if (c->num != 0) {
  161. size_t n = sizeof(c->u) - c->num;
  162. if (len < n) {
  163. OPENSSL_memcpy(p + c->num, data, len);
  164. c->num += (unsigned int)len;
  165. return 1;
  166. } else {
  167. OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
  168. len -= n;
  169. data += n;
  170. sha512_block_data_order(c->h, (uint64_t *)p, 1);
  171. }
  172. }
  173. if (len >= sizeof(c->u)) {
  174. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  175. if ((size_t)data % sizeof(c->u.d[0]) != 0) {
  176. while (len >= sizeof(c->u)) {
  177. OPENSSL_memcpy(p, data, sizeof(c->u));
  178. sha512_block_data_order(c->h, (uint64_t *)p, 1);
  179. len -= sizeof(c->u);
  180. data += sizeof(c->u);
  181. }
  182. } else
  183. #endif
  184. {
  185. sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
  186. data += len;
  187. len %= sizeof(c->u);
  188. data -= len;
  189. }
  190. }
  191. if (len != 0) {
  192. OPENSSL_memcpy(p, data, len);
  193. c->num = (int)len;
  194. }
  195. return 1;
  196. }
  197. int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
  198. uint8_t *p = (uint8_t *)sha->u.p;
  199. size_t n = sha->num;
  200. p[n] = 0x80; // There always is a room for one
  201. n++;
  202. if (n > (sizeof(sha->u) - 16)) {
  203. OPENSSL_memset(p + n, 0, sizeof(sha->u) - n);
  204. n = 0;
  205. sha512_block_data_order(sha->h, (uint64_t *)p, 1);
  206. }
  207. OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n);
  208. p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
  209. p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
  210. p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
  211. p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
  212. p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
  213. p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
  214. p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
  215. p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
  216. p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
  217. p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
  218. p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
  219. p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
  220. p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
  221. p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
  222. p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
  223. p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
  224. sha512_block_data_order(sha->h, (uint64_t *)p, 1);
  225. if (md == NULL) {
  226. // TODO(davidben): This NULL check is absent in other low-level hash 'final'
  227. // functions and is one of the few places one can fail.
  228. return 0;
  229. }
  230. switch (sha->md_len) {
  231. // Let compiler decide if it's appropriate to unroll...
  232. case SHA384_DIGEST_LENGTH:
  233. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  234. uint64_t t = sha->h[n];
  235. *(md++) = (uint8_t)(t >> 56);
  236. *(md++) = (uint8_t)(t >> 48);
  237. *(md++) = (uint8_t)(t >> 40);
  238. *(md++) = (uint8_t)(t >> 32);
  239. *(md++) = (uint8_t)(t >> 24);
  240. *(md++) = (uint8_t)(t >> 16);
  241. *(md++) = (uint8_t)(t >> 8);
  242. *(md++) = (uint8_t)(t);
  243. }
  244. break;
  245. case SHA512_DIGEST_LENGTH:
  246. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  247. uint64_t t = sha->h[n];
  248. *(md++) = (uint8_t)(t >> 56);
  249. *(md++) = (uint8_t)(t >> 48);
  250. *(md++) = (uint8_t)(t >> 40);
  251. *(md++) = (uint8_t)(t >> 32);
  252. *(md++) = (uint8_t)(t >> 24);
  253. *(md++) = (uint8_t)(t >> 16);
  254. *(md++) = (uint8_t)(t >> 8);
  255. *(md++) = (uint8_t)(t);
  256. }
  257. break;
  258. // ... as well as make sure md_len is not abused.
  259. default:
  260. // TODO(davidben): This bad |md_len| case is one of the few places a
  261. // low-level hash 'final' function can fail. This should never happen.
  262. return 0;
  263. }
  264. return 1;
  265. }
  266. #ifndef SHA512_ASM
  267. static const uint64_t K512[80] = {
  268. UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
  269. UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
  270. UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
  271. UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
  272. UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
  273. UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
  274. UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
  275. UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
  276. UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
  277. UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
  278. UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
  279. UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
  280. UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
  281. UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
  282. UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
  283. UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
  284. UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
  285. UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
  286. UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
  287. UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
  288. UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
  289. UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
  290. UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
  291. UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
  292. UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
  293. UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
  294. UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
  295. UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
  296. UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
  297. UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
  298. UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
  299. UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
  300. UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
  301. UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
  302. UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
  303. UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
  304. UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
  305. UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
  306. UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
  307. UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
  308. };
  309. #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
  310. #if defined(__x86_64) || defined(__x86_64__)
  311. #define ROTR(a, n) \
  312. ({ \
  313. uint64_t ret; \
  314. __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
  315. ret; \
  316. })
  317. #define PULL64(x) \
  318. ({ \
  319. uint64_t ret = *((const uint64_t *)(&(x))); \
  320. __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
  321. ret; \
  322. })
  323. #elif(defined(__i386) || defined(__i386__))
  324. #define PULL64(x) \
  325. ({ \
  326. const unsigned int *p = (const unsigned int *)(&(x)); \
  327. unsigned int hi = p[0], lo = p[1]; \
  328. __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
  329. ((uint64_t)hi) << 32 | lo; \
  330. })
  331. #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  332. #define ROTR(a, n) \
  333. ({ \
  334. uint64_t ret; \
  335. __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
  336. ret; \
  337. })
  338. #elif defined(__aarch64__)
  339. #define ROTR(a, n) \
  340. ({ \
  341. uint64_t ret; \
  342. __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
  343. ret; \
  344. })
  345. #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  346. __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  347. #define PULL64(x) \
  348. ({ \
  349. uint64_t ret; \
  350. __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
  351. ret; \
  352. })
  353. #endif
  354. #endif
  355. #elif defined(_MSC_VER)
  356. #if defined(_WIN64) // applies to both IA-64 and AMD64
  357. #pragma intrinsic(_rotr64)
  358. #define ROTR(a, n) _rotr64((a), n)
  359. #endif
  360. #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
  361. static uint64_t __fastcall __pull64be(const void *x) {
  362. _asm mov edx, [ecx + 0]
  363. _asm mov eax, [ecx + 4]
  364. _asm bswap edx
  365. _asm bswap eax
  366. }
  367. #define PULL64(x) __pull64be(&(x))
  368. #if _MSC_VER <= 1200
  369. #pragma inline_depth(0)
  370. #endif
  371. #endif
  372. #endif
  373. #ifndef PULL64
  374. #define B(x, j) \
  375. (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
  376. #define PULL64(x) \
  377. (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
  378. B(x, 7))
  379. #endif
  380. #ifndef ROTR
  381. #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
  382. #endif
  383. #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
  384. #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
  385. #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
  386. #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
  387. #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  388. #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  389. #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  390. // This code should give better results on 32-bit CPU with less than
  391. // ~24 registers, both size and performance wise...
  392. static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
  393. size_t num) {
  394. uint64_t A, E, T;
  395. uint64_t X[9 + 80], *F;
  396. int i;
  397. while (num--) {
  398. F = X + 80;
  399. A = state[0];
  400. F[1] = state[1];
  401. F[2] = state[2];
  402. F[3] = state[3];
  403. E = state[4];
  404. F[5] = state[5];
  405. F[6] = state[6];
  406. F[7] = state[7];
  407. for (i = 0; i < 16; i++, F--) {
  408. T = PULL64(W[i]);
  409. F[0] = A;
  410. F[4] = E;
  411. F[8] = T;
  412. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  413. E = F[3] + T;
  414. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  415. }
  416. for (; i < 80; i++, F--) {
  417. T = sigma0(F[8 + 16 - 1]);
  418. T += sigma1(F[8 + 16 - 14]);
  419. T += F[8 + 16] + F[8 + 16 - 9];
  420. F[0] = A;
  421. F[4] = E;
  422. F[8] = T;
  423. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  424. E = F[3] + T;
  425. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  426. }
  427. state[0] += A;
  428. state[1] += F[1];
  429. state[2] += F[2];
  430. state[3] += F[3];
  431. state[4] += E;
  432. state[5] += F[5];
  433. state[6] += F[6];
  434. state[7] += F[7];
  435. W += 16;
  436. }
  437. }
  438. #else
  439. #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
  440. do { \
  441. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
  442. h = Sigma0(a) + Maj(a, b, c); \
  443. d += T1; \
  444. h += T1; \
  445. } while (0)
  446. #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
  447. do { \
  448. s0 = X[(j + 1) & 0x0f]; \
  449. s0 = sigma0(s0); \
  450. s1 = X[(j + 14) & 0x0f]; \
  451. s1 = sigma1(s1); \
  452. T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
  453. ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
  454. } while (0)
  455. static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
  456. size_t num) {
  457. uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
  458. uint64_t X[16];
  459. int i;
  460. while (num--) {
  461. a = state[0];
  462. b = state[1];
  463. c = state[2];
  464. d = state[3];
  465. e = state[4];
  466. f = state[5];
  467. g = state[6];
  468. h = state[7];
  469. T1 = X[0] = PULL64(W[0]);
  470. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  471. T1 = X[1] = PULL64(W[1]);
  472. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  473. T1 = X[2] = PULL64(W[2]);
  474. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  475. T1 = X[3] = PULL64(W[3]);
  476. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  477. T1 = X[4] = PULL64(W[4]);
  478. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  479. T1 = X[5] = PULL64(W[5]);
  480. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  481. T1 = X[6] = PULL64(W[6]);
  482. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  483. T1 = X[7] = PULL64(W[7]);
  484. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  485. T1 = X[8] = PULL64(W[8]);
  486. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  487. T1 = X[9] = PULL64(W[9]);
  488. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  489. T1 = X[10] = PULL64(W[10]);
  490. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  491. T1 = X[11] = PULL64(W[11]);
  492. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  493. T1 = X[12] = PULL64(W[12]);
  494. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  495. T1 = X[13] = PULL64(W[13]);
  496. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  497. T1 = X[14] = PULL64(W[14]);
  498. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  499. T1 = X[15] = PULL64(W[15]);
  500. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  501. for (i = 16; i < 80; i += 16) {
  502. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  503. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  504. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  505. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  506. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  507. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  508. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  509. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  510. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  511. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  512. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  513. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  514. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  515. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  516. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  517. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  518. }
  519. state[0] += a;
  520. state[1] += b;
  521. state[2] += c;
  522. state[3] += d;
  523. state[4] += e;
  524. state[5] += f;
  525. state[6] += g;
  526. state[7] += h;
  527. W += 16;
  528. }
  529. }
  530. #endif
  531. #endif // !SHA512_ASM
  532. #undef ROTR
  533. #undef PULL64
  534. #undef B
  535. #undef Sigma0
  536. #undef Sigma1
  537. #undef sigma0
  538. #undef sigma1
  539. #undef Ch
  540. #undef Maj
  541. #undef ROUND_00_15
  542. #undef ROUND_16_80
  543. #undef HOST_c2l
  544. #undef HOST_l2c