boringssl/crypto/evp/p_rsa.c
David Benjamin 05821b0ee3 Consistently check length in RSA_add_pkcs1_prefix.
We check the length for MD5+SHA1 but not the normal cases. Instead,
EVP_PKEY_sign externally checks the length (largely because the silly
RSA-PSS padding function forces it). We especially should be checking
the length for these because otherwise the prefix built into the ASN.1
prefix is wrong.

The primary motivation is to avoid putting EVP_PKEY inside the FIPS
module. This means all logic for supported algorithms should live in
crypto/rsa.

This requires fixing up the verify_recover logic and some tests,
including bcm.c's KAT bits.

(evp_tests.txt is now this odd mixture of EVP-level and RSA-level error
codes. A follow-up change will add new APIs for RSA-PSS which will allow
p_rsa.c to be trimmed down and make things consistent.)

Change-Id: I29158e9695b28e8632b06b449234a5dded35c3e7
Reviewed-on: https://boringssl-review.googlesource.com/15824
Reviewed-by: Adam Langley <agl@google.com>
2017-05-02 20:29:47 +00:00

674 lines
19 KiB
C

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <limits.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rsa.h>
#include "../internal.h"
#include "../rsa/internal.h"
#include "internal.h"
typedef struct {
/* Key gen parameters */
int nbits;
BIGNUM *pub_exp;
/* RSA padding mode */
int pad_mode;
/* message digest */
const EVP_MD *md;
/* message digest for MGF1 */
const EVP_MD *mgf1md;
/* PSS salt length */
int saltlen;
/* tbuf is a buffer which is either NULL, or is the size of the RSA modulus.
* It's used to store the output of RSA operations. */
uint8_t *tbuf;
/* OAEP label */
uint8_t *oaep_label;
size_t oaep_labellen;
} RSA_PKEY_CTX;
static int pkey_rsa_init(EVP_PKEY_CTX *ctx) {
RSA_PKEY_CTX *rctx;
rctx = OPENSSL_malloc(sizeof(RSA_PKEY_CTX));
if (!rctx) {
return 0;
}
OPENSSL_memset(rctx, 0, sizeof(RSA_PKEY_CTX));
rctx->nbits = 2048;
rctx->pad_mode = RSA_PKCS1_PADDING;
rctx->saltlen = -2;
ctx->data = rctx;
return 1;
}
static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) {
RSA_PKEY_CTX *dctx, *sctx;
if (!pkey_rsa_init(dst)) {
return 0;
}
sctx = src->data;
dctx = dst->data;
dctx->nbits = sctx->nbits;
if (sctx->pub_exp) {
dctx->pub_exp = BN_dup(sctx->pub_exp);
if (!dctx->pub_exp) {
return 0;
}
}
dctx->pad_mode = sctx->pad_mode;
dctx->md = sctx->md;
dctx->mgf1md = sctx->mgf1md;
if (sctx->oaep_label) {
OPENSSL_free(dctx->oaep_label);
dctx->oaep_label = BUF_memdup(sctx->oaep_label, sctx->oaep_labellen);
if (!dctx->oaep_label) {
return 0;
}
dctx->oaep_labellen = sctx->oaep_labellen;
}
return 1;
}
static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) {
RSA_PKEY_CTX *rctx = ctx->data;
if (rctx == NULL) {
return;
}
BN_free(rctx->pub_exp);
OPENSSL_free(rctx->tbuf);
OPENSSL_free(rctx->oaep_label);
OPENSSL_free(rctx);
}
static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk) {
if (ctx->tbuf) {
return 1;
}
ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey));
if (!ctx->tbuf) {
return 0;
}
return 1;
}
static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!sig) {
*siglen = key_len;
return 1;
}
if (*siglen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->md) {
unsigned int out_len;
if (tbslen != EVP_MD_size(rctx->md)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_DIGEST_LENGTH);
return 0;
}
if (EVP_MD_type(rctx->md) == NID_mdc2) {
OPENSSL_PUT_ERROR(EVP, EVP_R_NO_MDC2_SUPPORT);
return 0;
}
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) {
return 0;
}
*siglen = out_len;
return 1;
case RSA_PKCS1_PSS_PADDING:
if (!setup_tbuf(rctx, ctx) ||
!RSA_padding_add_PKCS1_PSS_mgf1(rsa, rctx->tbuf, tbs, rctx->md,
rctx->mgf1md, rctx->saltlen) ||
!RSA_sign_raw(rsa, siglen, sig, *siglen, rctx->tbuf, key_len,
RSA_NO_PADDING)) {
return 0;
}
return 1;
default:
return 0;
}
}
return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode);
}
static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig,
size_t siglen, const uint8_t *tbs,
size_t tbslen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
size_t rslen;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (rctx->md) {
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa);
case RSA_PKCS1_PSS_PADDING:
if (tbslen != EVP_MD_size(rctx->md)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_DIGEST_LENGTH);
return 0;
}
if (!setup_tbuf(rctx, ctx) ||
!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, siglen,
RSA_NO_PADDING) ||
!RSA_verify_PKCS1_PSS_mgf1(rsa, tbs, rctx->md, rctx->mgf1md,
rctx->tbuf, rctx->saltlen)) {
return 0;
}
return 1;
default:
return 0;
}
}
if (!setup_tbuf(rctx, ctx) ||
!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, siglen,
rctx->pad_mode) ||
rslen != tbslen ||
CRYPTO_memcmp(tbs, rctx->tbuf, rslen) != 0) {
return 0;
}
return 1;
}
static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *sig,
size_t sig_len) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (out == NULL) {
*out_len = key_len;
return 1;
}
if (*out_len < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (!setup_tbuf(rctx, ctx)) {
return 0;
}
if (rctx->md == NULL) {
const int ret = RSA_public_decrypt(sig_len, sig, rctx->tbuf,
ctx->pkey->pkey.rsa, rctx->pad_mode);
if (ret < 0) {
return 0;
}
*out_len = ret;
OPENSSL_memcpy(out, rctx->tbuf, *out_len);
return 1;
}
if (rctx->pad_mode != RSA_PKCS1_PADDING) {
return 0;
}
/* Assemble the encoded hash, using a placeholder hash value. */
static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0};
const size_t hash_len = EVP_MD_size(rctx->md);
uint8_t *asn1_prefix;
size_t asn1_prefix_len;
int asn1_prefix_allocated;
if (!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len,
&asn1_prefix_allocated, EVP_MD_type(rctx->md),
kDummyHash, hash_len)) {
return 0;
}
size_t rslen;
int ok = 1;
if (!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, sig_len,
RSA_PKCS1_PADDING) ||
rslen != asn1_prefix_len ||
/* Compare all but the hash suffix. */
CRYPTO_memcmp(rctx->tbuf, asn1_prefix, asn1_prefix_len - hash_len) != 0) {
ok = 0;
}
if (asn1_prefix_allocated) {
OPENSSL_free(asn1_prefix);
}
if (!ok) {
return 0;
}
if (out != NULL) {
OPENSSL_memcpy(out, rctx->tbuf + rslen - hash_len, hash_len);
}
*out_len = hash_len;
return 1;
}
static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
if (!setup_tbuf(rctx, ctx) ||
!RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, key_len, in, inlen,
rctx->oaep_label, rctx->oaep_labellen,
rctx->md, rctx->mgf1md) ||
!RSA_encrypt(rsa, outlen, out, *outlen, rctx->tbuf, key_len,
RSA_NO_PADDING)) {
return 0;
}
return 1;
}
return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode);
}
static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *outlen, const uint8_t *in,
size_t inlen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
size_t padded_len;
if (!setup_tbuf(rctx, ctx) ||
!RSA_decrypt(rsa, &padded_len, rctx->tbuf, key_len, in, inlen,
RSA_NO_PADDING) ||
!RSA_padding_check_PKCS1_OAEP_mgf1(
out, outlen, key_len, rctx->tbuf, padded_len, rctx->oaep_label,
rctx->oaep_labellen, rctx->md, rctx->mgf1md)) {
return 0;
}
return 1;
}
return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode);
}
static int check_padding_md(const EVP_MD *md, int padding) {
if (!md) {
return 1;
}
if (padding == RSA_NO_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
return 1;
}
static int is_known_padding(int padding_mode) {
switch (padding_mode) {
case RSA_PKCS1_PADDING:
case RSA_NO_PADDING:
case RSA_PKCS1_OAEP_PADDING:
case RSA_PKCS1_PSS_PADDING:
return 1;
default:
return 0;
}
}
static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) {
RSA_PKEY_CTX *rctx = ctx->data;
switch (type) {
case EVP_PKEY_CTRL_RSA_PADDING:
if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) ||
(p1 == RSA_PKCS1_PSS_PADDING &&
0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) ||
(p1 == RSA_PKCS1_OAEP_PADDING &&
0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if ((p1 == RSA_PKCS1_PSS_PADDING || p1 == RSA_PKCS1_OAEP_PADDING) &&
rctx->md == NULL) {
rctx->md = EVP_sha1();
}
rctx->pad_mode = p1;
return 1;
case EVP_PKEY_CTRL_GET_RSA_PADDING:
*(int *)p2 = rctx->pad_mode;
return 1;
case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) {
*(int *)p2 = rctx->saltlen;
} else {
if (p1 < -2) {
return 0;
}
rctx->saltlen = p1;
}
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
if (p1 < 256) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS);
return 0;
}
rctx->nbits = p1;
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
if (!p2) {
return 0;
}
BN_free(rctx->pub_exp);
rctx->pub_exp = p2;
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_MD:
case EVP_PKEY_CTRL_GET_RSA_OAEP_MD:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) {
*(const EVP_MD **)p2 = rctx->md;
} else {
rctx->md = p2;
}
return 1;
case EVP_PKEY_CTRL_MD:
if (!check_padding_md(p2, rctx->pad_mode)) {
return 0;
}
rctx->md = p2;
return 1;
case EVP_PKEY_CTRL_GET_MD:
*(const EVP_MD **)p2 = rctx->md;
return 1;
case EVP_PKEY_CTRL_RSA_MGF1_MD:
case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING &&
rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) {
if (rctx->mgf1md) {
*(const EVP_MD **)p2 = rctx->mgf1md;
} else {
*(const EVP_MD **)p2 = rctx->md;
}
} else {
rctx->mgf1md = p2;
}
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
OPENSSL_free(rctx->oaep_label);
if (p2 && p1 > 0) {
rctx->oaep_label = p2;
rctx->oaep_labellen = p1;
} else {
rctx->oaep_label = NULL;
rctx->oaep_labellen = 0;
}
return 1;
case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
CBS_init((CBS *)p2, rctx->oaep_label, rctx->oaep_labellen);
return 1;
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED);
return 0;
}
}
static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) {
RSA *rsa = NULL;
RSA_PKEY_CTX *rctx = ctx->data;
if (!rctx->pub_exp) {
rctx->pub_exp = BN_new();
if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp, RSA_F4)) {
return 0;
}
}
rsa = RSA_new();
if (!rsa) {
return 0;
}
if (!RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, NULL)) {
RSA_free(rsa);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
const EVP_PKEY_METHOD rsa_pkey_meth = {
EVP_PKEY_RSA,
pkey_rsa_init,
pkey_rsa_copy,
pkey_rsa_cleanup,
pkey_rsa_keygen,
pkey_rsa_sign,
NULL /* sign_message */,
pkey_rsa_verify,
NULL /* verify_message */,
pkey_rsa_verify_recover,
pkey_rsa_encrypt,
pkey_rsa_decrypt,
0 /* derive */,
pkey_rsa_ctrl,
};
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_RSA_PADDING,
padding, NULL);
}
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
0, out_padding);
}
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, NULL);
}
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, out_salt_len);
}
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, NULL);
}
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e);
}
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md);
}
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void*) out_md);
}
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void*) md);
}
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void*) out_md);
}
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label,
size_t label_len) {
if (label_len > INT_MAX) {
return 0;
}
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_LABEL, (int)label_len,
(void *)label);
}
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
const uint8_t **out_label) {
CBS label;
if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) {
return -1;
}
if (CBS_len(&label) > INT_MAX) {
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
return -1;
}
*out_label = CBS_data(&label);
return (int)CBS_len(&label);
}